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1 Motivation

In a wide variety of physical problems, the complexity of the physics involved is
such that it is necessary to develop approximations, because the complete physical
model is simply too costly. Sometimes however the complete model is essential to
capture all the physics, and often this is only in part of the domain of interest. One
can then use heterogeneous domain decomposition techniques: if we know a priori
where an approximation is valid, we can divide the computational domain into sub-
domains in which a particular approximation is valid and the topic of heterogeneous
domain decomposition methods is to find the corresponding coupling conditions to
insure that the overall coupled solution is a good approximation of the solution of
the complete physical model. For an overview of such techniques, see [9, 10] and
references therein. However, there are many physical problems where it is not a pri-
ori knownwhere which approximation is valid. In such problems, one needs to track
the domain of validity of a particular approximation, and this is usually not an easy
task. An example of such a method is the -method, see [4, 1].
In this contribution, we introduce a new formalism for heterogeneous domain de-

composition, which is not based on a sharp decomposition into subdomains where
different models are valid. The main idea relies on the notion of Fuzzy Sets intro-
duced by Zadeh [12] in 1965. The Fuzzy Set Theory relaxes the notion of belonging
to a set through membership functions to (fuzzy) sets that account for partially be-
longing to a set. In the context of heterogeneous domain decomposition, this could
be useful if one assumes that the computational domain can be decomposed into
fuzzy sets that form a partition of the domain in a sense that needs to be specified.
Once such a partition is given, one can compute the solution of the coupled problem
using the membership functions. Note that the membership functions can depend on
space and time and therefore can take into account a change in the validity domain
of a particular approximation.We show here that this technique leads to an excellent
coupling strategy for the 1D advection dominated diffusion problem. Such a domain
decomposition method would be able, in principle, to take into account part of the
domain where none of the available approximations are valid under the assumption
that a combination of them is a good enough approximation there.
On the assumption u= u1+u2: The idea to use fuzzy set theory came from an

assumption that arose in some specific coupling methods (see below). We formulate
it here for a generic partial differential equation of the form
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e-mail: {Martin.Gander}{Jerome.Michaud}@unige.ch

1



2 Martin J. Gander and Jérôme Michaud

L (u) = g, (1)

whereL is a linear differential operator.
Assumption 1 (u= u1+u2).We assume that the solution u of (1) can be written as a
sum, u= u1+u2, and that one can derive a coupled system for the new unknowns u 1
and u2. The derivation of the coupled system might then use relevant approximations
for one or both components.
This assumption has been used at least in two different series of papers: the first one
is in physics for the approximation of neutrino radiative transfer in core-collapse
supernovae [11, 2, 3], and the second one is in mathematics for the coupling between
the kinetic equation and approximations of it (diffusion, Euler, Navier-Stokes...)
[8, 5, 6, 7].
In the following, we will see how this assumption can be linked with fuzzy sets.

This will lead us to introduce fuzzy domain decomposition methods.

2 Fuzzy Sets and Fuzzy Domain Decomposition Methods

Let X be a set in the classical sense of generic elements x, such that X = {x}.

Definition 1 (Fuzzy Set).A fuzzy set A of X is characterized by amembership func-
tion hA(x) that associates to every point of X a real number in [0,1]. The value of
hA(x) represents the grade of membership of x in A. The support Supp(A) of a fuzzy
set A is the classical subset of X defined by Supp(A) = {x ∈ X |hA(x) "= 0}.

Remark 1. If the membership function is a characteristic function, then we recover
the classical notion of sets.

We next list a few useful properties of fuzzy sets:

Definition 2 (Complementary set). The complementary set Ac of a fuzzy set A is
defined by its membership function hAc = 1− hA.

Definition 3 (Union of fuzzy sets). The union of two fuzzy sets A and B of mem-
bership function hA(x) and hB(x) is the fuzzy set C, denoted by C = A∪B. It is
characterized by its membership function hC(x) linked with those of A and B by
hC(x) =max(hA(x),hB(x)), ∀x ∈ X .

Remark 2. The union of a fuzzy set with its complementary set is not equal to the
initial set, unless the membership functions are characteristic functions: A∪Ac ! X .

Definition 4 (Algebraic sum of fuzzy sets). The algebraic sum of A and B is de-
noted by A+B and is defined by the membership function h A+B = hA+ hB. This
definition has a meaning only if hA(x)+ hB(x)≤ 1, ∀x ∈ X .

Remark 3. Note that the algebraic sum has the property that A+Ac = X .
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Let be the computational domain of the problem we want to solve. We use the
algebraical sum of fuzzy sets to obtain a decomposition of the domain:

Definition 5 (Fuzzy Domain Decomposition (FDD)). A fuzzy domain decomposi-
tion is given by the fuzzy sets i, i= 1, . . . ,n defined by their membership functions
hi such that their algebraic sum equals the domain : = 1+ . . .+ n. In terms
of membership functions, this condition reads n

i=1 hi(x) = 1, ∀x ∈ .

Definition 6. Let u be a function from to R. We define the restriction of u to the
fuzzy set A of by uA = hAu, where hA is the membership function of A.

Proposition 1. Let u be a function from to R, let { i}ni=1 be a fuzzy domain
decomposition of and let ui be the restriction of u to i. Then

u=
n

i=1
ui and u′ =

n

i=1
u′i. (2)

Proof. This is a direct consequence of Definition 6 of the restriction of u to fuzzy
sets, and the linearity of derivatives. ()

Definition 7 (FDDM, eFDDM, iFDDM). A FDD method (FDDM), is a numeri-
cal method based on an FDD of the domain. We will say that an FDDM is explicit
(eFDDM) if the membership functions hi are explicitly known, and implicit other-
wise (iFDDM).

Remark 4. The relation (2) shows that if the Assumption 1 is used, it is natural to
interpret the resulting method as an FDDM. The methods of Degond et al. [8, 5, 6, 7]
belong to the eFDDM class, but the IDSA [11, 2, 3] is an example of an iFDDM.

If we want to obtain an heterogeneous DDM, we need two ingredients. The first
one is a coupling methodology between the two approximations (one of them may
be exact), and the second one is a criterion to decide where an approximation is
valid. The advantage of an eFDDM is that the hi functions are used both for imple-
menting the coupling and the criterion. As the partition is explicitly known, we can
change it to test various criteria for the validity of the different approximations.

We now show the coupling procedure for a decomposition into two fuzzy do-
mains. Assume that we want to solve an approximation of Problem (1) and that we
have two approximationsL1 andL2 of the linear operatorL valid in a fuzzy sense
in 1 and 2 respectively. Then, we can decompose Problem (1) as

L (u∗) = g ⇔ h1L (u∗)+h2L (u∗) = g ! h1L1(u)+h2L2(u) = g, (3)

where we have introduced in the last formulation the approximated operators. Here,
u∗ stands for the exact solution and u for the approximate solution. The symbol!
means ”is approximated by”. In order to obtain a FDDM, we will use Assumption 1
, and to obtain an explicit method in the sense of Definition 7, we require
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ui = hiu, u′i = h′iu+ hiu′, u′′i = h′′i u+ 2h′iu′+ hiu′′, i= 1,2, (4)

where we used the product rule for hi sufficiently smooth.
As g= h1g+ h2g, we can rewrite Equation (3)3 as a system
{
h1L1(u) = h1g on ,
h2L2(u) = h2g on ,

!
{

L̃1(u1) = h1g+L12(u2) on Supp( 1),

L̃2(u2) = h2g+L21(u1) on Supp( 2).
(5)

The second system is obtained by using Assumption 1 and Equation (4). The use of
the product rule to handle the fact that the hi do not commute with Li leads to the
operators L̃i andLi,3−i that are linked by the relation

L̃i = Li−Li,3−i, i= 1,2. (6)

The change in support simply reflects the fact that Equation (5) 1 is non-trivial only
in Supp( i). Equation (5)2 is an eFDDM for Problem (3)3.

Remark 5. The boundary conditions of an eFDDM can be easily defined by trans-
ferring the boundary conditions on u to u i using Equation (4).

3 An Example: Advection Dominated Diffusion

As an example, we consider for ,a> 0 the 1D advection diffusion equation

L (u∗) = u∗′′+ au∗′ = 0 on (0,1), u∗(0) = 0, u∗(1) = 1, (7)

whose closed form solution is given by u∗(x) = e−ax/ −1
e−a/ −1 . For a , 1, the diffusion

term is only important close to 0 where a boundary layer forms. We can define the
operators

L1 := L = xx+ a x, and L2 := a x, (8)

and, as before, using Assumption 1 and Equation (4) we have

L12 := (h′′1+ 2h′1 x)+ ah′1 and L21 := ah′2. (9)

The eFDDM method we get with the operators from (8,9), using Equation (6) to
define L̃i, with g= 0, is

u′′1+(a− 2 h′1)u′1− ( h′′1+ ah′1)u1 = 2 h′1u′2+( h′′1+ ah′1)u2, on Supp( 1),
au′2− ah′2u2 = ah′2u1, on Supp( 2).

(10)
Under Assumption 1 and Equation (4), Equations (5) 2 and (3)3 are equivalent.
The problem we are solving is then equivalent, by Equation (3) 3, to

h1 u′′+ au′ = 0, on (0,1), u(0) = 0, u(1) = 1, (11)
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whose analytical solution, provided that Supp( 1) is connected, is given by

u(x) =
∫ x
0 (e

−
∫ y
0

a
h1(z)

dz
)dy

∫
Supp( 1)(e

−
∫ y
0

a
h1(z)

dz
)dy

, if x ∈ Supp( 1), u(x) = 1, otherwise. (12)

We now study the approximation quality of this method as a → 0 for a decreasing
twice continuously differentiable membership function h 1 of the form

h1(x):= 1, if 0≤ x≤ c1, h1(x):= h(x), if c1 < x< c2, h1(x):= 0, if c2≤ x≤ 1,
(13)

where 0 < h(x) ≤ 1, so that Supp( 1) in Equation (12) is Supp( 1) = [0,c2). We
define := c2− c1 to be the width of the coupling region.

Theorem 1. For h1 as in Equation (13), the relative error errApp( a ) :=
‖u−u∗‖L2(0,1)
‖u∗‖L2(0,1)

satisfies when a → 0 the estimates:

c1 = cst., c1 =
(
a
)1− , c1 = a ln(

a ), c1 = a ,
= cst. = ′ (

a
)1−

= ′
a = ′

a
errApp( a ) O(e

− ac1
) O

(
e− ( a )

)
O(ln( a )0.5( a )

+0.5) O(( a )
0.5)

(14)

Here, > 0, ′ ≥ 0 are constants, and 0< ≤ 1.

Proof. The proof of this result is divided into 3 steps. Step 1 finds two functions ũ ∗
1

and ũ∗2 that satisfy ũ∗1 ≤ u≤ ũ∗2. With such functions, we always have the bound

‖u− u∗‖L2(0,1)
‖u∗‖L2(0,1)

≤max
i=1,2

ei, ei :=
‖ũ∗i − u∗‖L2(0,1)
‖u∗‖L2(0,1)

. (15)

Step 2 estimates maxi=1,2 e2i and step 3 handles the 4 cases in (14).
Step 1:With h1 as in Equation (13), we can express the function u as

u(x) =






1−e−
ax

1−e−
ac1

(
1− a ∫ c2c1 e

− a ∫ y
c1 h

−1(z)dzdy
) , if 0≤ x≤ c1,

1−e−
ac1

(
1− a ∫ x

c1
e−

a ∫ y
c1 h

−1(z)dzdy
)

1−e−
ac1

(
1− a ∫ c2c1 e

− a ∫ y
c1 h

−1(z)dzdy
) , if c1 < x< c2,

1, if c2 ≤ x≤ 1.

Using the fact that 0< h(z)≤ 1, we have the estimate

1− e−
ac1

< 1− e−
ac1

(
1− a ∫ x

c1
e−

a ∫ y
c1
h−1(z)dzdy

)
≤ 1− e−

ax
, c1 < x< c2.

Using this estimate, we define ũ∗i , i= 1,2 as
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if 0≤ x≤ c1, 1−e−
ax

1−e−
ac2

if c1 < x< c2, 1−e
− ac1

1−e−
ac2

if c2 ≤ x≤ 1, 1





=: ũ∗1(x)≤ u(x)≤ ũ∗2(x) :=






1−e−
ax

1−e−
ac1 if 0≤ x≤ c1,

1−e−
ax

1−e−
ac1 if c1 < x< c2,

1 if c2 ≤ x≤ 1.

Step 2:We now compute the relative L2-errors for ũ∗i , i= 1,2. Using Equation (15),
we have

e21 = I1(1,2)+ I2+ I3 and e22 = I1(2,1)+ I3,

where the different terms are integrals of the form
∫
(
ũ∗i
u − 1)2dx,

I1(i, j) :=
∫ ci

0

(
1− e− a

1− e−
ac j − 1

)2
dx= ci

(
1− e− a

1− e−
ac j − 1

)2
=O

(
ci( a

)e−
2ac j ( a )

)
,

(16)

I2:=
∫ c2

c1

[
(1− e−

ac1
)(1− e− a

)

(1− e−
ac2

)(1− e−
ax
)
− 1

]2
dx≤ max

i=1,2




[
(1− e−

ac1
)(1− e− a

)

(1− e−
ac2

)(1− e−
aci
)
− 1

]2



= O
(

(
a
)e−

2ac1( a )
)
, (17)

I3 :=
∫ 1

c2

(
1− e−

a

1− e−
ax − 1

)2
dx=

∫ 1

c2

[

k=1
e−

kax
(1− e−

a
)−e−

a
]2
dx=O

(

a
e−

2ac2( a )
)
.

(18)
As e−

aci
< 1 and e− ax

< 1, we can use geometric series to obtain estimates of the
different integrals. Taking only the leading term gives the result for I 1(i, j) and I3.
For I3, the leading term under the integration is e−

ax , because x≤ 1. For I2 we also
used the monotonicity of the exponential to obtain the bound and then, use once
again a geometric series to conclude. In the order notation, we have specified the
possible dependence of ci and on the parameter a .
Step 3:We now need to distinguish the different cases in order to complete the

proof. Using Equations (16,17,18), we can compute the results shown in Table 1.
Finally, we use relation (15) to obtain (14). ()

This theorem shows that the approximation quality of the method is similar to the
best known coupling methods for this kind of problem, namely the one based on the
factorization of the operator, see [10].
Numerical experiment: We now show a numerical experiment, where we

solve (10) with the membership function h1 as in Equation (13), with

h(x) = −3(2x3− 3(c1+ c2)x2+ 6c1c2x− c22(3c1− c2)),

and h2 := 1−h1. With this decomposition,we solve the advection-diffusionproblem
if x ≤ c1, the purely advective model if x ≥ c2, and the mixed model in-between.
The coupling is done with a spline. We introduce a set of equidistant points x i =
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c1 = cst., c1 =
(
a
)1− , c1 = a ln(

a ), c1 = a ,
= cst. = ′ (

a
)1−

= ′
a = ′

a

I1(1,2) O(e−
2ac2

) O
(
e−2( + ′)( a )

)
O(ln( a )( a )

2 +1) O( a )

I1(2,1) O(e−
2ac1

) O
(
e−2 ( a )

)
O(ln( a )( a )

2 +1) O( a )

I2 O(e−
2ac1

) O
(
e−2 ( a )

)
O(( a )

2 +1) O( a )

I3 O(e−
2ac2

) O
(
e−2( + ′)( a )

)
O(( a )

2 +1) O( a )

e21 O(e−
2ac1

) O
(
e−2 ( a )

)
O(ln( a )( a )

2 +1) O( a )

e22 O(e−
2ac1

) O
(
e−2 ( a )

)
O(ln( a )( a )

2 +1) O( a )

Table 1 Table of the order of the different integrals Ij .
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Fig. 1 Results for the cases 2 and 3 of Theorem 1 where we refined the grid keeping n constant.
We see that the curves follow the theoretical predictions.

i · x with i= 0, . . . ,n+1 and x= 1/(n+1). We discretize the problem (10) with
an upwind 3-point finite difference scheme. This gives us a system of 2n coupled
equations. For each component u j, j = 1,2, we remove from the system all the
irrelevant equations, those for which h j(xi) = 0; this corresponds to the restriction
to Supp( j).
In order to illustrate the behavior of the method, we have chosen the cases 2 and

3 in Theorem 1. In both cases, the observed behavior is in very good agreement with
the predictions, see Figure 1 where we computed the relative error Err A between the
numerical advection-diffusion solution and its approximation for different parame-
ters. In the two cases shown, the coupling region is moving towards zero when is
decreasing and we see that the approximation quality depends on how the coupling
region is moved, accordingly to Theorem 1. We kept n constant in order to capture
the boundary layer that forms when → 0.
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4 Conclusion

We presented a new heterogeneous domain decomposition method based on Fuzzy
Set Theory. We have shown a concise analysis for a simple, but relevant, model
problem which showed that this type of coupling leads to a very efficient heteroge-
neous domain decompositionmethod. This method can be viewed as a formalization
of a coupling technique for very complex problems, see for example [5, 6] for the
coupling between kinetic and hydrodynamic equations. In such a coupling, the par-
tition between the different fuzzy domains can evolve with time and can even adapt
automatically to the local conditions using some local criterion, see [6].
We think that such methods have a great potential in various coupling problems

and in particular for problems in which the partition into different domains of va-
lidity of concurrent approximations is not a priori clear, because they permit to try
different criteria by changing only the way the membership functions are defined.
We are currently interested in such a method for the coupling of the diffusion

limit of the relativistic Boltzmann equation with a stationary free streaming limit of
it. This would be an alternative to the current version of the IDSA, which still has
some mathematical issues that need to be fixed, see [2, 3] for more details.
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