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1 Introduction

Nowadays reservoir simulators are indispensable tools to reservoir engineers. They
are widely used in the optimization and prediction of oil and gas production. How-
ever, for large-scale reservoir simulation, computational time is usually too long.
A case with over one million grid blocks may run weeks or even months. High
performance processors and well-designed software are demanded. Though today’s
CPUs (Central Processing Unit) are much more powerful than before, performance
of single CPU tends to slow down due to material and energy consumption and
heat dissipation issues. Processor vendors have begun to move to multiple process-
ing units, which form two major directions: multi-core CPUs and many-core GPUs
[11].

In reservoir simulation, numerical methods like the finite difference and finite
volume methods [7] are often used to discretize the mathematical models. Linear
and nonlinear systems arising from the discretized models by those methods are
sparse, which are usually time-consuming and difficult to solve. Krylov subspace
solvers [18, 1] are general methods to solve these linear systems, and for large-
scale reservoir simulation with over one million grid blocks, a reservoir simulator
may take 90% or even more time on the solution of the linear systems. Fast and
accurate linear and nonlinear solvers are essential to reservoir simulators. Saad et
al. developed the GMRES solver for general unsymmetric linear systems [1, 18]
and Vinsome designed the ORTHOMIN solver, which was originally developed for
reservoir simulators [19]. PCG, BICGSTAB, algebraic multigrid and direct linear
solvers were also proposed. Commonly used preconditioners were also developed,
such as Incomplete LU (ILU) factorization, domain decomposition, algebraic multi-
grid, and multi-stage preconditioners [1, 18]. GPUs (Graphics Processing Unit) are
usually used for display. Since each pixel can be processed simultaneously, GPUs
are designed in such a way that they can manipulate data in parallel. Their float
point performance and memory speed are very high [16, 15]. In general, GPUs are
ten times faster than general CPUs [16, 15], which makes them powerful devices
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for parallel computing. Since GPUs are designed for graphics processing and not
for general tasks, their architectures are different from those of CPUs. Hence new
algorithms for GPUs should be developed to utilize GPUs’ performance. NVIDIA
developed a hybrid matrix format, the corresponding sparse matrix-vector multipli-
cation kernel and a GPU-based linear solver package CUSP [4, 5, 2]. Bell et al. from
NVIDIA also investigated fine-grained parallelism of AMG solvers using a single
GPU [3]. Saad et al. developed a sparse matrix-vector multiplication kernel for JAD
matrix format and the GMRES solver [11]. Chen et al. designed a new matrix for-
mat, HEC, a new matrix-vector multiplication kernel, Krylov subspace solvers, al-
gebraic multigrid solvers and several preconditioners [20, 13, 14, 12]. Haase et al.
developed a parallel AMG solver for a GPU cluster [10]. In this paper, we will intro-
duce our work on developing a GPU-based parallel iterative linear solver package
and applying it to reservoir simulation.

The framework is as follows: In §2.1, GPU computing, our parallel linear solvers
and GPU-based reservoir simulators are introduced. In §3, numerical experiments
are presented.

2 Parallel Reservoir Simulator

In this section, we will propose GPU-based parallel linear solvers and precondition-
ers, and apply these solvers to reservoir simulation.

2.1 GPU Computing

The NVIDIA Fermi GPU, Tesla C2070, has 14 SMs (Streaming Multi-processors),
and each SM has 32 SPs (Streaming Processors). That’s 448 streaming processors
in total while a normal CPU has only 2, 4, 6 or 8 cores. The GPU architectures are
being developed rapidly. Each SM of the new Tesla Kepler GPUs has 192 SPs, much
more than Fermi GPUs. The Tesla Kepler K20X has 2688 processors in total. At this
moment we are using Fermi GPUs. The NVIDIA Fermi GPU, Tesla C2070, has a
peak performance of 1030G FLOPS in single precision and a peak performance of
515G FLOPS in double precision, which are around 10 times faster than that of
CPUs. The Tesla Kepler K20X GPU has a peak performance of 1310G FLOPS in
double precision and a peak performance of 3950G FLOPS in single precision [17].

Each SM has its own L1 cache, shared memory and register. They share L2 cache,
constant memory, texture memory and global memory. The global memory stores
most of data, and is used to communicate with CPUs. The NVIDIA Tesla C2070
has 6 GB memory. Its memory speed is around 144 GB/s while the memory speed
of CPUs is around 15 GB/s. The GPU memory is also about 10 times faster than the
CPU memory. The Tesla Kepler K20X GPU has a memory speed of 250GB/s [17].
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NVIDIA provides CUDA Toolkit [16, 15] to help users develop high performance
programs.

2.2 Parallel Linear Solvers

GPUs have different architectures from general purpose CPUs. The NVIDIA GPUs
access global memory in a coalesced way, which means that if the memory access
is arranged well, threads in a grid block can fetch data in one or a few rounds. In
this case, the memory access speed is the highest and codes are efficient. GPUs are
emerging parallel devices. However, algorithms that work well on CPUs may not
work effectively on GPUs [12]. We develop a new matrix format and the corre-
sponding sparse matrix-vector multiplication kernel (SPMV) to accelerate iterative
linear solvers. The new matrix format, HEC (Hybrid of ELL and CSR format), is
shown in Fig. 1. A HEC matrix has two submatrices, ELL matrix and CSR matrix.
The ELL submatrix stores the regular part of a given matrix and the CSR subma-
trix stores the irregular part of the given matrix. The ELL submatrix is stored in
column-major manner. The main advantage of HEC is that it is friendly to ILU-
related preconditioners. When we store a lower triangular matrix, it’s clear that the
last element in ELL or CSR part is a diagonal element and elements before the di-
agonal one are easy to recognize. If we use HYB, which is efficient for SPMV, the
irregular part is stored in a COO matrix, we don’t know which element is the diag-
onal one or elements before it. The second advantage is that SPMV algorithm for
HEC is simple and implementation is straightforward. The psudo-codes for SPMV
operation is listed in Alg. 1. Alg. 1 is for calculating y = Ax. Other related BLAS
2 operations are similar. We also develop BLAS 1 operations. A typical operation
y = αx+βy is shown in Alg. 2.

ELL CSR

Ap

Aj

Ax

Aj Ax

Fig. 1 HEC matrix format

We consider the following linear system:
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Algorithm 1 Sparse Matrix-Vector Multiplication, y = Ax
for i = 1: n do

the i-th thread calculate the i-th row of ELL matrix; {ELL part, use one thread for each row}
end for

for i = 1: n do
the i-th thread calculate the i-th row of CSR matrix; {CSR part, use one thread for each row}

end for

Algorithm 2 BLAS 1 subroutine, y = αx+βy
for i = 1: n do

y[i] = αx[i]+βy[i]; {Use one GPU kernel to deal with this loop}
end for

Ax = b, (1)

where A is a nonsingular n×n matrix, b is the right-hand side and x is the solution to
be solved for. Krylov subspace solvers are general purpose methods for the solution
of linear systems. Based on BLAS 1 and BLAS 2 subroutines we have implemented
several Krylov subspace solvers and algebraic multigrid (AMG) solvers, including
GMRES, CG, BICGSTAB, ORTHOMIN, classical AMG and smoothed aggregation
AMG solvers.

In practice, an equivalent linear system of equation (1) is solved:

M−1Ax = M−1b, (2)

where M is a nonsingular n×n matrix, called a preconditioner or left-preconditioner.
When we choose a preconditioner M, a general principle is that M is an good ap-
proximation of A and in this case, it means that the product of M−1 and A approxi-
mates the unit matrix I well. The condition number of M−1A is much smaller than
that of A and the preconditioned linear system (2) is much easier to solve compared
to the original equation (1). Meanwhile, M should also be easy to construct and
be easy to solve. We have implemented ILU(k)[18], block ILU(k) [18], ILUT(tol,
p)[18], block ILUT(tol, p)[18], domain decomposition, approximate inverse, poly-
nomial and algebraic multigrid preconditioners. For many preconditioners, an upper
triangular linear system and a lower triangular linear system are required to solve.
GPU-based parallel triangular solvers are developed to speed the solving of triangu-
lar linear systems. Details can be read in [13].

2.3 Reservoir Simulator

The reservoir simulator generates a Jacobian matrix in each Newton iteration. As
mentioned above, the solution of linear systems in each Newton iteration may dom-
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inate the whole simulation time. For a large-scale black oil simulator, the linear
solvers take over 90% of the running time. It is necessary for us to apply high per-
formance linear solvers. We replace CPU-based linear solvers with GPU-based par-
allel linear solvers. The linearized systems are transferred to GPUs, and then GPUs
solve the linear system using hundreds of microprocessors in parallel and transfer
the solution back to the simulator. By applying GPU-based linear solvers, reservoir
simulators run much faster and it is possible for personal computers to run larger
cases.

3 Numerical Experiments

Numerical experiments are performed on our workstation with Intel Xeon X5570
CPUs and NVIDIA Tesla C2050/C2070 GPUs. The operating system is CentOS
6.3 X86 64 with CUDA Toolkit 5.1 and GCC 4.4. All CPU codes are compiled
with -O3 option and in this paper only one CPU core is employed. The type of float
point number is double and blocks mean the number of sub-domains in this section.

Example 1. Several different SPMV algorithms [2, 4] are compared using matrices
from the University of Florida sparse matrix collection [9]. Performance data [14] is
collected in Tab 1 and numbers in the table mean speedup of GPU-based algorithms.

Table 1 Example 1: Performance of SPMV

Matrix CSR ELL HYB HEC
msc23052 0.71 1.55 2.29 2.50
cfd2 1.41 8.06 6.86 11.61
ESOC 1.06 11.56 11.56 11.61
cage13 1.25 7.56 9.42 11.04
af shell8 1.17 8.66 9.63 11.12
parabolic fem 4.36 9.97 7.56 10.00
Emilia 923 0.97 6.64 8.36 8.65
atmosmodd 2.94 14.54 14.50 14.57
Serena 0.98 1.79 7.26 7.29
SPE10 1.13 1.24 11.15 10.27

In Tab 1, the first column stands for matrix and others mean speedup using dif-
ferent SPMV algorithms. We can see that algorithms using HYB and HEC matrix
formats are always efficient and the performance of our HEC matrix format is better
than that of HYB.

Example 2. The matrix used here is from SPE10 [7, 8]. The SPE10 problem is a
standard benchmark for the black oil simulator. The problem is highly heterogenous
and it is designed to solve hard. The grid size for SPE10 is 60x220x85. The number
of unknowns is 2,188,851 and the number of non-zeros is 29,915,573. The linear
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solver employed is GMRES(20), and block ILU(k), block ILUT(tol, p) and do-
main decomposition preconditioners are applied as preconditioners. Here RAS (Re-
stricted Additive Schwarz) a domain decomposition method developed by Cai[6].
Performance data is collected in Table 2. For this example, loading time is always
less than 1s.

Table 2 Example 2: Performance of SPE10

Preconditioner Parameters Setup (s) CPU (s) GPU (s) Speedup
BILU(0) (1, 0) 4.23 76.65 12.42 6.16
BILU(0) (16, 0) 2.04 92.80 12.78 7.25
BILU(0) (128, 0) 1.76 86.22 12.05 7.14
BILU(0) (512, 0) 1.63 92.82 12.87 7.20
BILUT (1, 0) 4.76 23.50 9.03 2.60
BILUT (16, 0) 2.49 32.00 7.17 4.46
BILUT (128, 0) 1.94 42.51 7.82 5.42
BILUT (512, 0) 1.81 47.44 8.80 5.37
RAS (256, 1) 9.28 106.61 14.36 7.41
RAS (1024, 1) 11.91 110.36 16.36 6.73
RAS (256, 2) 10.99 107.89 17.28 6.23
RAS (1024, 2) 15.28 138.60 20.93 6.61

In Table 2, the first column stands for preconditioners. The second column stands
for parameters used for each preconditioner and they are the number of sub-domains
and overlap respectively. The others are for setup time, running time and speedup,
respectively. From the table, we can speed ILU(0) 6.2 times faster. The speedup can
be higher if we increase the number of blocks. The average speedup of BILU(0) is
about 7. In this example, BILUT is the most effective preconditioner. It always takes
the least running time. However, due to its irregular non-zero pattern, its speedup is
lower than that of the other two precondtioners. Since there is not enough memory
on GPU, the maximum number of blocks for RAS in this case is 1024. The average
speedup of RAS is 6.5.

Example 3. The matrix used here is also from SPE10, which has the same size with
the one we use in Example 2. Its pressure part has a dimension of 1,094,421 and
has 7,478,141 non-zeros. Here we solve pressure matrix using algebraic multigrid
solver and the entire matrix is solved by GMRES (40) with CPR-AMG (Constrained
Pressure Residual) preconditioner [7]. To compare, the entire matrix is also solved
using GMRES(40) with ILU(0) preconditioner. Classical AMG solver is applied
here. The standard interpolator and damped Jacobi smoother are applied. V-cycle is
used for solving phase and the coarsest level is solved using GMRES. The AMG
solver has 8 levels. The termination criterium is 1e-6. Performance data is shown in
Tab 3.

The speedup of AMG is 6.49 when solving pressure matrix. When CPR-AMG
is used as a preconditioner, the GMRES(40) converges quickly. CPR-AMG is much
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Table 3 Example 3: Performance of AMG

Solver Preconditioner Setup (s) CPU (s) GPU (s) Speedup Residual Iterations
AMG 3.96 6.86 1.04 6.49 4.88e-7 11
GMRES(40) CPR-AMG 8.43 185.42 27.51 6.74 3.91e-7 9
GMRES(40) ILU(0) 4.3 1037.26 195.96 5.29 9.42e-4 100

more efficient than ILU(0). And a speedup of 6.74 is obtained. From Tab 3, we can
also see that the setup phase takes too much time, which should be optimized in
future.

Example 4. This example is to test the speedup of our GPU solver in the whole black
oil simulator. The case is SPE10 simulation in 100 days. The grid size for SPE10 is
60x220x85. The solver is GMRES(20). Performance data is shown in Tab 4.

Table 4 Example 4: Performance of black oil simulator

Preconditioner Blocks CPU (s) GPU (s) Speedup
BILU(0) 1 49610.28 7721.09 6.43
BILU(0) 4 53350.63 8524.31 6.26
BILU(0) 8 54286.07 8720.25 6.23
BILUT 1 19533.45 9008.22 2.17
BILUT 4 23187.85 8670.53 2.67
BILUT 8 21718.45 7908.42 2.75

As shown in Tab 4, the block ILU(0) preconditioner achieves a speedup of 6.2
while the speedup of block ILUT is much lower. The reason is that the non-zero
pattern of ILUT is irregular and the ILU factorization takes too much time.

4 Conclusion

We have developed a GPU-based parallel linear solver package. When solving ma-
trices from reservoir simulation, the parallel solvers are much more efficient than
CPU-based linear solvers. However, efforts should be made to improve the setup
phase of domain decomposition, the factorization of ILUT and parallelism of block
ILUT preconditioner.
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