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1 Introduction

We are interested in this paper in anisotropic diffusion problems of the form

−div(A∇u) = f on Ω ; u = 0 on ∂Ω . (1)

A discretization of the Schwarz algorithm using Discrete Duality Finite Volume

methods (DDFV for short) for such problems was developed in [3]. The DDFV

method needs a dual set of unknowns located on both vertices and “centers” of the

primal control volumes, which leads to two meshes, the primal and the dual one, and

permits the reconstruction of two-dimensional discrete gradients located on a third

partition of Ω , called the diamond mesh, and also a discrete divergence operator

defined by duality. The DDFV method is particularly accurate in terms of gradient

approximation, see the benchmark [11] for problem (1) and an extensive bibliog-

raphy. DDFV methods are also very robust, see [6, 2] for theoretical justifications,

and [5] for applications. It is therefore of great interest to develop parallel solvers

for such discretizations.

A non-overlapping Schwarz method using Robin transmission conditions was

first proposed at the continuous level by Lions in [12]. For the model problem (1),

the algorithm with two non-overlapping subdomains, Ω = Ω1 ∪Ω2, and interface

Γ = ∂Ω1 ∩∂Ω2, computes for iteration index l ∈N
∗ the subdomain solutions

−div(A∇ul
j) = f on Ω j, ul

j = 0 on ∂Ω j ∩∂Ω ,

A∇ul
j ·n ji + pul

j = −A∇ul−1
i ni j + pul−1

i on Γ , j 6= i,
(2)

where n ji is the unit normal from Ω j to Ωi, and p is a parameter that one can choose

to accelerate convergence. Choosing p such that the algorithm converges as fast as

possible leads to a so called optimized Schwarz method [8].

The non-overlapping algorithm ((2)) at the discrete level is interesting for cou-

pling non-matching grids, see for example [1], [4] and [9] for isotropic diffusion

problems or [10], [7] for general diffusion. It has also been analyzed in [3] in the

case of highly anisotropic operators, and on a wide range of meshes. Numerical

experiments in [3] showed however that the DDFV discretization chosen at the in-

terfaces leads to a convergence factor of 1−O(h) of the algorithm (h denotes the
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mesh size), when the parameter p was chosen numerically such that convergence

was fastest. This contraction factor is much worse than the optimal contraction fac-

tor 1−O(
√

h) of ((2)) for other discretizations, see [8]. The purpose of this short

paper is to investigate why the classical DDFV discretization leads to such a slow

convergence of the optimized Schwarz method, and to develop a new discretization

of the transmission conditions in order to restore the optimal convergence rate. We

show our results for the Poisson equation, A = Id, but the extension to anisotropic

tensors A can be obtained similarly. In Section (2), we show for the case of the

Poisson equation and square meshes on half spaces that the traditional DDFV dis-

cretization leads to a mass matrix in the term with the Robin parameter. This mass

matrix couples the primal and dual grids, and destroys the good convergence behav-

ior of the optimized Schwarz method. In Section (3), we then show how to discretize

the transmission conditions differently in the context of DDFV in order to recover

the optimal convergence factor 1−O(
√

h). We then extend the algorithm to gen-

eral meshes and prove convergence. Finally, in Section (4), we present numerical

experiments which illustrate our analysis.

2 DDFV discretization of the optimized Schwarz algorithm

We decompose Ω := R
2 into two non-overlapping half planes Ω1 := (−∞,0)×R

and Ω2 := (0,∞)×R, with the interface Γ := ∂Ω1 ∩ ∂Ω2. We use a regular grid

of squares, so that the DDFV discretization away from the interface Γ leads to two

interlaced five point finite difference schemes. The mesh size is denoted by h. We

use for the scheme aligned with the interface star indices, and for the other one

indices without stars, see Figure (1). The DDFV Schwarz algorithm proposed in [3]

solves at each iteration l ∈ N
∗, on each domain j on interior primal cells

u
j,l
m+1,n − 2u j,l

m,n + u
j,l
m−1,n + u

j,l
m,n+1− 2u j,l

m,n + u
j,l
m,n−1 = 0, m > 0. (3)

In order to obtain (3) for m = 1, we introduce u
j,l
0,n which is linked with the interface

primal unknowns u
j,l
1
2 ,n

by

u
j,l
1
2 ,n

=
1

2
(u

j,l
1,n + u

j,l
0,n). (4)

On interior dual cells, the algorithm solves

u
j,l
m∗+1,n∗ − 2u

j,l
m∗,n∗ + u

j,l
m∗−1,n∗ + u

j,l
m∗,n∗+1 − 2u

j,l
m∗,n∗ + u

j,l
m∗,n∗−1 = 0, m∗ > 0, (5)

whereas on boundary dual cells, the additional fluxes ϕ j,l
n,n∗ are used,

u
j,l
1∗,n∗ − u

j,l
0∗,n∗ +

1

2
(u j,l

0∗,n∗+1 − 2u
j,l
0∗,n∗ + u

j,l
0∗,n∗−1)+

h

2
(ϕ j,l

n−1,n∗ +ϕ j,l
n,n∗) = 0. (6)
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Domain 1 Domain 2
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u
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n∗
ϕ1,l

n,n∗ ϕ2,l
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m = 2m = 0 m = 0m = 2 m = 1 m = 1m = 1
2

Γ

Fig. 1 The unknowns u
j,l
m,n are associated with the primal cells, whose centers are bullets •; the

unknowns u
j,l
m∗,n∗ are associated with the dual cells shown in dashed, whose centers are diamonds

�, or ♦ for boundary cells. The centers of the dual cells � are the vertices of the primal cells,

and similarly the centers of the primal cells • are the vertices of the dual cells. Additional primal

unknowns u
j,l
1
2 ,n

, located at ◦, and also additional flux unknowns ϕ
j,l

n,n∗ are needed on the interface Γ .

The indices j and l stand for the domain and the iteration.

The Robin transmission condition on Γ can now be expressed using the fluxes ϕ
j,l

n,n∗ ,

ϕ
j,l

n,n∗ +
p

2
(u

j,l
0∗,n∗ + u

j,l
1
2 ,n

) =−ϕ i,l−1
n,n∗ +

p

2
(ui,l−1

0∗,n∗ + u
i,l−1
1
2 ,n

). (7)

Finally, a consistency condition is required for the fluxes, namely

1

2
(ϕ

j,l
n,n∗ +ϕ

j,l
n,n∗+1) =

2

h
(u

j,l
1
2 ,n

− u
j,l
1,n). (8)

Equations (3)-(8) completely describe the original DDFV Schwarz algorithm from

[3]. In order to analyze the DDFV discretization of the optimized Schwarz algo-

rithm (3) and (5), we perform a discrete Fourier transform in the n index, which

corresponds to the y variable, aligned with the interface. Setting u
j,l
m,n = û

j,l
m,keiknh,

u
j,l
m∗,n∗ = û

j,l
m∗,keikn∗h, both û

j,l
·,k and û

j,l
(·)∗,k satisfy the recurrence relation

Xm+1 − 2Xm+Xm−1 +αkXm = 0, (9)

with αk = 2coskh− 2. The general solutions of (3) and (5) are bounded solutions

of (9), which implies that

û
j,l
m,k =C

j,l
k λ m, û

j,l
m∗,k =C

∗, j,l
k λ m∗

, λ :=
2−αk −

√

(2−αk)2 − 4

2
.

In order to determine the constants C
j,l
k and C

∗, j,l
k from the transmission conditions

(6) and (8), we eliminate the fluxes from the interface conditions using (7):
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1

h
(u j,l

0∗,n∗ − u
j,l
1∗,n∗)−

1

2h
(u j,l

0∗,n∗+1 − 2u
j,l
0∗,n∗ + u

j,l
0∗,n∗−1)+ pγn∗(u

j,l)

=−1

h
(ui,l−1

0∗,n∗ − u
i,l−1
1∗,n∗)+

1

2h
(ui,l−1

0∗,n∗+1 − 2u
i,l−1
0∗,n∗ + u

i,l−1
0∗,n∗−1)+ pγn∗(u

i,l−1),

and
2

h
(u j,l

1
2 ,n

− u
j,l
1,n)+ pγn(u

j,l) =−2

h
(ui,l−1

1
2 ,n

− u
i,l−1
1,n )+ pγn(u

i,l−1),

with traces

γn∗(u
j,l)=

1

4
(u j,l

1
2 ,n

+2u
j,l
0∗,n∗+u

j,l
1
2 ,n−1

), γn(u
j,l)=

1

4
(u j,l

0∗,n∗+2u
j,l
1
2 ,n

+u
j,l
0∗,n∗+1). (10)

We then obtain for the iteration of the constants using (4),

(

C
j,l
k

C
∗, j,l
k

)

=B

(

C
i,l−1
k

C
∗,i,l−1
k

)

with the iteration matrix B = M−1N, where

M =

(

1
h
(1−λ )+ p

4
(1+λ ) p

4
(1+ eikh)

p
8
(1+λ )(1+ e−ikh) 1

h
(1−λ )− αk

2h
+ p

2

)

N =

(

− 1
h
(1−λ )+ p

4
(1+λ ) p

4
(1+ eikh)

p
8
(1+λ )(1+ e−ikh) − 1

h
(1−λ )+ αk

2h
+ p

2

)

.

Proposition 1. The optimized parameter in the DDFV discretized Schwarz algo-

rithm ((3)-(8)) satisfies popt = Argminp maxk(ρ(B)) =
4
h
, and the associated opti-

mized contraction factor is 1− 1
2
kminh+O(h2).

Proof. The proof of this result is based on two observations: the minimum is ob-

tained when both eigenvalues are the same, which is achieved with the given choice

of p, and then the maximum is attained for the lowest mode k = kmin. The compu-

tations are however too long and technical for this short paper.

3 A new DDFV Discretization of the Transmission Conditions

A careful comparison with the convergence results in [8] suggests that the mass ma-

trices appearing in the traces γn(u
j,l) introduce an additional coupling, which pre-

vents the optimized DDFV Schwarz algorithm from converging rapidly. Modifying

the traces γn∗(u
j,l) in (10) to be lumped, i.e.

γnew
n∗ (u j,l) = u

j,l
0∗,n∗ , γnew

n (u j,l) = u
j,l
1
2 ,n

, (11)

the iteration matrix becomes diagonal: Bnew = (Mnew)−1Nnew, where
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Fig. 2 Notation around a diamond. The new unknowns needed to describe the DDFV scheme on

Ω as the limit of the Schwarz algorithm

Mnew =

(

1
h
(1−λ )+ p

2
(1+λ ) 0

0 1
h
(1−λ )− αk

2h
+ p

)

Nnew =

(

− 1
h
(1−λ )+ p

2
(1+λ ) 0

0 − 1
h
(1−λ )+ αk

2h
+ p

)

,

and we obtain a much better convergence result.

Proposition 2. The optimized parameter in the DDFV Schwarz algorithm ((3)-(8))

with modified traces (11) satisfies popt = Argminp maxk(ρ(B
new))∼ 23/4

√
kmin√

h
, and

the associated optimized contraction factor is 1− 21/4
√

kmin

√
h+O(h).

Proof. The proof of this result is based on equioscillation of the first eigenvalue

of Bnew at k = kmin and the second eigenvalue of Bnew at k = kmax ≈ π
h

, using

asymptotic analysis. The details are however too long for this short paper.

We now describe the DDFV Schwarz algorithm for general subdomains and de-

compositions using the notation from [3]. DDFV schemes can be described by two

operators: a discrete gradient ∇D and a discrete divergence (divK,divK∗), which are

dual to each other, see [2] or [3]. We refer to the primal unknowns by u
j,l
K or u

j,l
L ,

to the dual unknowns by u
j,l
K∗ or u

j,l
L∗ and to the set of unknowns by u j,l . The primal

mesh on Ω j is called M j, the dual mesh on Ω j is M∗
j for the interior cells, ∂M∗

j,Γ

for the dual boundary cells related to Γ and the diamond mesh on Ω j is called D j.

We further need additional unknowns u
j,l
L on the edges of Γ denoted by ∂M j,Γ , and

additional fluxes ψ j,l
K∗ for K∗ ∈ ∂M∗

j,Γ as shown in Figure (2). We denote by DK∗

the set of diamonds such that D ∩ K∗ 6= /0 for K∗ ∈ ∂M∗
j,Γ . The DDFV Schwarz

algorithm then computes for l ∈N
∗, j = 1,2, i = 2,1

−divK

(

∇Du j,l
)

= 0, ∀ K ∈M j, −divK∗
(

∇Du j,l
)

= 0, ∀ K
∗ ∈M

∗
j , (12a)
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− ∑
D∈DK∗

mσ∗
(

∇Du j,l,nσK∗

)

−mσK∗ ψ
j,l

K∗ = 0, ∀ K
∗ ∈ ∂M∗

j,Γ , (12b)

(

∇Du j,l,n ji

)

+ pu
j,l
L =−

(

∇Dui,l−1,ni j

)

+ pu
i,l−1
L , ∀ L ∈ ∂M j,Γ , (12c)

ψ
j,l

K∗ + pu
j,l
K∗ =−ψ i,l−1

K∗ + pu
i,l−1
K∗ , ∀ K

∗ ∈ ∂M∗
j,Γ . (12d)

Using the same discrete Fourier transform for (12) as in Section (2), we obtain

Bnew. Well-posedness of the algorithm can be proved using classical a priori esti-

mates with the discrete duality property.

Theorem 1 (Convergence of the new Schwarz algorithm). For all p> 0, the solu-

tion of the new Schwarz algorithm (12) converges as l tends to infinity to the solution

of the classical DDFV scheme for the Laplace equation on Ω .

Proof. We first rewrite the classical DDFV scheme for the Laplace equation on Ω
as the limit of the Schwarz algorithm. To this end, we introduce new unknowns near

the boundary Γ , see Figure (2):

• for all K ∈M j, we set u
j,∞
K = uK and for all K∗ ∈M

∗
j, we set u

j,∞
K∗ = uK∗ ,

• for all L ∈ ∂M j,Γ choose u
j,∞
L = u

i,∞
L =

mσ
K′ uK+mσK u

K′
mσ∗ ,

• for all K∗ ∈ ∂M∗
j,Γ choose u

j,∞
K∗ = u

i,∞
K∗ = uK∗ and

ψ j,∞
K∗ =−ψ i,∞

K∗ =− 1

mσK∗
∑

D∈DK∗
mσ∗

(

∇Du j,∞,nσK∗
)

.

By linearity it suffices to prove the convergence of the new DDFV Schwarz algo-

rithm (12) to zero. An a priori estimate using discrete duality leads to

2∑
D∈D j

mD‖∇Du j,l+1‖2−∑
L∈∂M j,Γ

mσL
(∇Du j,l+1,nσL

)u
j,l+1
L − ∑

K∗∈∂M∗
j,Γ

mσK∗ ψ
j,l+1

K∗ u
j,l+1
K∗ = 0.

We now rewrite the last two terms as

− ∑
L∈∂M j,Γ

mσL
(∇Du j,l+1,nσL

)u
j,l+1
L =

1

4p
∑

L∈∂M j,Γ

mσL

(

−(∇Du j,l+1,nσL
)+ pu

j,l+1
L

)2

− 1

4p
∑

L∈∂Mi,Γ

mσL

(

−(∇Dui,l ,nσL
)+ pu

i,l
L

)2

,

and using (12b)

− ∑
K∗∈∂M∗

j,Γ

mσK∗ ψ
j,l+1

K∗ u
j,l+1
K∗

=
1

4p
∑

K∗∈∂M∗
j,Γ

mσK∗

(

pu
j,l+1
K∗ −ψ

j,l+1
K∗

)2

− 1

4p
∑

K∗∈∂M∗
i,Γ

mσK∗

(

pu
i,l
K∗ −ψ i,l

K∗

)2

.
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Fig. 3 Asymptotic behavior of the numerically optimized parameter p on the left, and number of

iterations to reduce the error by a factor of 10−10 on the right

Summing over l = 0, · · · , lmax − 1 and j = 1,2, we get

2
lmax−1

∑
l=0

∑
j=1,2

∑
D∈D j

mD‖∇Du j,l+1‖2 +
1

4p
∑

j=1,2
∑

L∈∂M j,Γ

mσL

(

pu
j,lmax
L − (∇Du j,lmax ,nσL

)
)2

+
1

4p
∑

j=1,2
∑

K∗∈∂M∗
j,Γ

mσK∗

(

−ψ j,lmax

K∗ + pu
j,lmax

K∗

)2

= ∑
j=1,2

1

4p



 ∑
L∈∂M j,Γ

mσL

(

−(∇Du j,0,nσL
)+ pu

j,0
L

)2

+ ∑
K∗∈∂M∗

j,Γ

mσK∗

(

−ψ
j,0

K∗ + pu
j,0
K∗

)2



 .

This shows that the total energy stays bounded as the iteration l goes to infinity, and

hence the algorithm converges.

4 Numerical experiments

We show results for Laplace’s equation on Ω = (−1,1)2 with two subdomains x> 0

and x< 0. We first simulate in Figure (3) the error equations, i.e. using homogeneous

data, and starting with a random initial guess. On the left, we show the p that worked

best as h is refined, both for a conforming square mesh (2i × 2i squares on Ω j,

j = 1,2), and for a non-conforming square mesh (2i × 2i squares on Ω1 and 3i × 3i

squares on Ω2). On the right, we show the number of iterations needed to get an

error reduction of 10−10. These experiments illustrate well our theoretical results.

We next show a case with exact solution u(x,y) = cos(2.5πx)cos(2.5πy). Start-

ing with a random initial guess, Figure (4) shows the convergence history of the

algorithms for various parameters p on the left, and snapshots of the error at itera-

tion 10 on the right. We clearly see that for p too small, high frequencies dominate

the error, and for p large low frequencies. In the old algorithm, the theoretically

optimized choice p = 90.5, and in the new algorithm the theoretically optimized

choice p = 14.18 will work best in the long run. Finally, a priori knowledge of the
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Fig. 4 Left: convergence history on a conforming 32× 32 square mesh. Right: snapshots of the

error at iteration 10, left column for the old version and p = 5,15,90.5, right column for the new

version and p = 5,10,14.18

frequency content of the solution can be used to choose a p that gives very rapid

convergence early on in the iteration (here p = 5, good for low frequencies). This

choice becomes however very bad in the long run, once other error frequencies be-

come important.
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