FETI-DP methods for Optimal Control Problems

Roland Herzog ${ }^{1}$ and Oliver Rheinbach ${ }^{2}$

1 Introduction

We consider FETI-DP domain decomposition methods for optimal control problems of the form

$$
\begin{equation*}
\min _{y, u} \frac{1}{2} \int_{\Omega}\left(y(x)-y_{d}(x)\right)^{2} d x+\frac{\alpha}{2} \int_{\Omega}(u(x))^{2} d x \tag{1}
\end{equation*}
$$

where $y \in V$ denotes the unknown state and $u \in U$ the unknown control, subject to a PDE constraint

$$
\begin{equation*}
a(y, v)=(f, v)_{0}+(u, v)_{0} \quad \text { for all } v \in V \tag{2}
\end{equation*}
$$

The function y_{d} denotes a given desired state and $\alpha>0$ a cost parameters. By $(\cdot, \cdot)_{0}$, we denote the standard L_{2} inner product. In this paper, $a(\cdot, \cdot)$ will be the bilinear form associated with linear elasticity, i.e.,

$$
\begin{equation*}
a(y, v)=(2 \mu \varepsilon(y), \varepsilon(v))_{0}+(\lambda \operatorname{div} y, \operatorname{div} v)_{0} \tag{3}
\end{equation*}
$$

where μ, and λ are the Lamé parameters.
The state (displacement field) is sought in $V=H_{0}^{1}\left(\Omega, \partial \Omega_{D}\right)^{2}=\left\{y \in H^{1}(\Omega)^{2}\right.$: $y=0$ on $\left.\partial \Omega_{D}\right\}$, where $\Omega \subset \mathbf{R}^{2}$ and $\partial \Omega_{D}$ is part of its boundary. For simplicity, we consider the case of volume control, i.e., $U=L_{2}(\Omega)^{2}$.

Dual-primal FETI methods were first introduced by Farhat, Lesoinne, Le Tallec, Pierson, and Rixen [3] and have successfully scaled to 10^{5} processor cores [6]. In [8] a first convergence bound for scalar problems in 2D was provided. Numerical scalability for FETI-DP methods applied to linear elasticity problems was first proven in [7].

Balancing Neumann-Neumann domain decomposition methods for the optimal control of scalar problems have been considered in Heinkenschloss and Nguyen [5, 4]. There, local optimal control problems on non-overlapping subdomains are considered and a Balancing Neumann-Neumann preconditioner is constructed for the indefinite Schur complement. Multigrid methods have, of course, also been considered for optimal control problems, see, e.g., [10]. A review of block approaches to optimal control problems can be found in [9]. A recent block approach can be found in [11].

[^0]We discretize y by $P 1$ finite elements, u by $P 0$ finite elements and obtain the discrete problem

$$
\begin{array}{r}
\min _{y, u} \frac{1}{2} y^{T} M y+\frac{\alpha}{2} u^{T} Q u-c^{T} y \\
\text { s.t. } \quad A y=f+N u \tag{5}
\end{array}
$$

2 Discrete Problem and Domain Decomposition

The necessary and sufficient optimality conditions are given by the discrete system

$$
\left[\begin{array}{ccc}
M & 0 & A^{T} \tag{6}\\
0 & \alpha Q & -N^{T} \\
A & -N & 0
\end{array}\right]\left[\begin{array}{l}
y \\
u \\
p
\end{array}\right]=\left[\begin{array}{l}
c \\
0 \\
f
\end{array}\right]
$$

where $A \in \mathbf{R}^{n \times n}, Q \in \mathbf{R}^{m \times m}, M \in \mathbf{R}^{n \times n}$. Here, $A=A^{T}=\left(a\left(\varphi_{i}, \varphi_{j}\right)\right)_{i, j}$ is a stiffness matrix, whereas $Q=\left(\left\langle\psi_{i}, \psi_{j}\right\rangle\right)_{i, j}, M=\left(\left\langle\psi_{i}, \psi_{j}\right\rangle\right)_{i, j}$ and $N=\left(\left\langle\varphi_{i}, \psi_{j}\right\rangle\right)_{i, j}$ are mass matrices. We will denote the block system (6) by

$$
\begin{equation*}
K x=b . \tag{7}
\end{equation*}
$$

We decompose Ω into N nonoverlapping subdomains $\Omega_{i}, i=1, \ldots, N$, i.e. $\bar{\Omega}=$ $\bigcup_{i=1}^{N} \bar{\Omega}_{i}, \Omega_{i} \cap \Omega_{j}=\emptyset$ if $i \neq j$. Each subdomain is the union of shape-regular finite element cells with matching nodes across the interface, $\Gamma:=\bigcup_{i \neq j} \partial \Omega_{i} \cap \partial \Omega_{j}$, where $\partial \Omega_{i}, \partial \Omega_{j}$ are the boundaries of Ω_{i}, Ω_{j}, respectively.

For each subdomain, we assemble the local problem $K^{(i)}$, which represents the discrete optimality system for (1)-(2), restricted to the subdomain Ω_{i}. Let us denote, for each subdomain, the variables that are on the subdomain interface by an index Γ and the interior unknowns by I. Note that the interior variables also comprise the variables on the Neumann boundary $\partial \Omega \backslash \partial \Omega_{D}$. In block form, we can now write the subdomain problem matrices $K^{(i)}, i=1, \ldots, N$ as

$$
K^{(i)}=\left[\begin{array}{ccc}
M^{(i)} & 0 & A^{(i) T} \tag{8}\\
0 & \alpha Q^{(i)} & -N^{(i) T} \\
A^{(i)} & -N^{(i)} & 0
\end{array}\right]=\left[\begin{array}{cc|c|cc}
M_{I I}^{(i)} & M_{I \Gamma}^{(i)} & 0 & A_{I I}^{(i)} & A_{I I}^{(i)} \\
M_{I \Gamma}^{(i) T} & M_{\Gamma \Gamma}^{(i)} & 0 & A_{I \Gamma}^{(i) T} & A_{\Gamma \Gamma}^{(i)} \\
\hline 0 & 0 & \alpha Q_{I I}^{(i)} & -N_{I I}^{(i) T} & -N_{\Gamma I}^{(i) T} \\
\hline A_{I I}^{(i)} & A_{I \Gamma}^{(i)} & -N_{I I}^{(i)} & 0 & 0 \\
A_{I \Gamma}^{(i) T} & A_{\Gamma \Gamma}^{(i)} & -N_{\Gamma I}^{(i)} & 0 & 0
\end{array}\right] .
$$

We define the block matrices

$$
K_{I I}^{(i)}=\left[\begin{array}{ccc}
M_{I I}^{(i)} & 0 & A_{I I}^{(i)} \tag{9}\\
0 & \alpha Q_{I I}^{(i)} & -N_{I I}^{(i)} \\
A_{I I}^{(i)} & -N_{I I}^{(i)} & 0
\end{array}\right], K_{\Gamma \Gamma}^{(i)}=\left[\begin{array}{cc}
M_{\Gamma \Gamma}^{(i)} & A_{\Gamma \Gamma}^{(i)} \\
A_{\Gamma \Gamma}^{(i)} & 0
\end{array}\right], K_{I \Gamma}^{(i)}=\left[\begin{array}{cc}
M_{I \Gamma}^{(i)} & A_{I \Gamma}^{(i)} \\
0 & -N_{\Gamma I}^{(i) T} \\
A_{I \Gamma}^{(i)} & 0
\end{array}\right] .
$$

Following the approach of FETI-type methods a continuity constraint $B x=0$ is introduced to enforce the continuity of y and p across each interface Γ. The introduction of Lagrange multipliers λ then leads to the FETI master system

$$
\left[\begin{array}{ccc}
K^{(1)} & & \tag{10}\\
& \ddots & \\
& & \widehat{B}^{(1)} \\
\widehat{B}^{(1)} & \ldots & \widehat{B}^{(N)} \\
\widehat{B}^{(N)} & 0
\end{array}\right]\left[\begin{array}{c}
x^{(1)} \\
\vdots \\
x^{(N)} \\
\lambda
\end{array}\right]=\left[\begin{array}{c}
b^{(1)} \\
\vdots \\
b^{(N)} \\
0
\end{array}\right]
$$

In the context of our optimal control problem, $\widehat{B}^{(i)}$ is of the form $\widehat{B}^{(i)}=\left[B_{y}^{(i)}|0| B_{p}^{(i)}\right]$. Note that it is not appropriate to enfore continuity for the control variable u, since it is an algebraic variable and has been discretized by discontinuous elements.

In dual-primal FETI methods the continuity constraint is enforced on a subset of the variables on the interface Γ by partial finite element assembly. These variables are denoted by the index Π (primal). Here, for our 2D problems, we use primal vertex variables. For the remaining interface variables, the continuity is enforced by Lagrange multipliers. Such interface variables are denoted by the index Δ (dual). We thus write the matrices $M^{(i)}, A^{(i)}, N^{(i)}$ appearing in (8) in the form

$$
M^{(i)}=\left[\begin{array}{ccc}
M_{I I}^{(i)} & M_{I \Delta}^{(i)} & M_{I \Pi}^{(i)} \tag{11}\\
M_{I \Lambda}^{(i) T} & M_{\Delta \Delta}^{(i)} & M_{\Delta \Pi}^{(i)} \\
M_{I \Pi}^{(i) T} & M_{I \Delta}^{(i) T} & M_{\Pi \Pi}^{(i)}
\end{array}\right], A^{(i)}=\left[\begin{array}{ccc}
A_{I I}^{(i)} & A_{I \Delta}^{(i)} & A_{I \Pi}^{(i)} \\
A_{I \Delta}^{(i) T} & A_{\Delta \Delta}^{(i)} & A_{\Delta \Pi}^{(i)} \\
A_{I \Pi}^{(i) T} & A_{I \Delta}^{(i) T} & A_{\Pi \Pi}^{(i)}
\end{array}\right], N^{(i)}=\left[\begin{array}{c}
N_{I I}^{(i)} \\
N_{\Delta I}^{(i)} \\
N_{\Pi I}^{(i)}
\end{array}\right],
$$

and $Q^{(i)}=Q_{I I}^{(i)}$. Inserting this block form into (8), we obtain the block form of $K_{\Pi \Pi}^{(i)}$,

$$
K_{\Pi \Pi}^{(i)}=\left[\begin{array}{cc}
M_{\Pi \Pi}^{(i)} & A_{\Pi \Pi}^{(i) T} \tag{12}\\
A_{\Pi \Pi}^{(i)} & 0
\end{array}\right] .
$$

For the assembly of the primal variables y_{Π} and p_{Π}, we define the combined assembly operator $\widehat{R}_{\Pi}^{(i) T}$, i.e., we obtain for the assembled global matrix $\widetilde{K}_{\Pi \Pi}$

$$
\begin{align*}
\widetilde{K}_{\Pi \Pi} & =\widehat{R}_{\Pi}^{T} K_{\Pi \Pi} \widehat{R}_{\Pi}=\left[\widehat{R}_{\Pi}^{(1) T}, \ldots, \widehat{R}_{\Pi}^{(N) T}\right]\left[\begin{array}{ccc}
K_{\Pi \Pi}^{(1)} & & 0 \\
& \ddots & \\
0 & & K_{\Pi \Pi}^{(N)}
\end{array}\right]\left[\begin{array}{c}
\widehat{R}_{\Pi}^{(1)} \\
\widehat{R}_{\Pi}^{(N)}
\end{array}\right] \\
& =\sum_{i=1}^{N} \widehat{R}_{\Pi}^{(i) T} K_{\Pi \Pi}^{(i)} \widehat{R}_{\Pi}^{(i)}=\sum_{i=1}^{N}\left[\begin{array}{cc}
R_{\Pi}^{(i) T} & 0 \\
0 & R_{\Pi}^{(i) T}
\end{array}\right]\left[\begin{array}{cc}
M_{\Pi \Pi}^{(i)} & A_{\Pi \Pi}^{(i) T} \\
A_{\Pi \Pi}^{(i)} & 0
\end{array}\right]\left[\begin{array}{cc}
R_{\Pi}^{(i)} & 0 \\
0 & R_{\Pi}^{(i)}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\widetilde{M}_{\Pi \Pi} \widetilde{A}_{\Pi \Pi}^{T} \\
\widetilde{A}_{\Pi \Pi} & 0
\end{array}\right] . \tag{13}
\end{align*}
$$

The partially assembled system matrix is then

$$
\widetilde{K}=\left[\begin{array}{cccc}
K_{B B}^{(1)} & & & \tag{14}\\
& \ddots & & \widetilde{K}_{B \Pi}^{(1)} \\
& & K_{B B}^{(N)} & \widetilde{K}_{B \Pi}^{(N)} \\
\widetilde{K}_{B \Pi}^{(1) T} & & \ldots & \widetilde{K}_{B \Pi}^{(N) T} \\
\widetilde{K}_{\Pi \Pi}
\end{array}\right]
$$

with the blocks

$$
K_{B B}^{(i)}=\left[\begin{array}{ccccc}
M_{I I}^{(i)} & M_{I \Delta}^{(i)} & 0 & A_{I I}^{(i)} & A_{I \Delta}^{(i)} \tag{15}\\
M_{I \Delta}^{(i) T} & M_{\Delta \Delta}^{(i)} & 0 & A_{I \Delta}^{(i) T} & A_{\Delta \Delta}^{(i)} \\
0 & 0 & \alpha Q_{I I}^{(i)} & -N_{I I}^{(i) T} & -N_{\Delta I}^{(i) T} \\
A_{I I}^{(i)} & A_{I \Delta}^{(i)} & -N_{I I}^{(i)} & 0 & 0 \\
A_{I \Delta}^{(i) T} & A_{\Delta \Delta}^{(i)} & -N_{\Delta I}^{(i)} & 0 & 0
\end{array}\right],
$$

and

$$
\begin{align*}
\widetilde{K}_{B \Pi}^{(i) T} & =\left[\begin{array}{ccccc}
\widetilde{M}_{I \Pi}^{(i) T} & \widetilde{M}_{\Delta \Pi}^{(i) T} & 0 & \widetilde{A}_{I \Pi}^{(i) T} & \widetilde{A}_{\Delta \Pi}^{(i) T} \\
\widetilde{A}_{I \Pi}^{(i) T} & \widetilde{A}_{\Delta \Pi}^{(i) T} & \widetilde{N}_{I \Pi}^{(i) T} & 0 & 0
\end{array}\right] \tag{16}\\
& =\left[\begin{array}{cc}
R_{\Pi \Pi}^{(i) T} & 0 \\
0 & R_{\Pi}^{(i) T}
\end{array}\right]\left[\begin{array}{ccccc}
\widetilde{M}_{I \Pi}^{(i) T} & \widetilde{M}_{\Delta \Pi}^{(i) T} & 0 & \widetilde{A}_{I \Pi}^{(i) T} & \widetilde{A}_{\Delta \Pi}^{(i) T} \\
\widetilde{A}_{I \Pi}^{(i) T} & \widetilde{A}_{\Delta \Pi}^{(i) T} & \widetilde{N}_{I \Pi}^{(i) T} & 0 & 0
\end{array}\right] .
\end{align*}
$$

Now, we can formulate the FETI-DP master system,

$$
\left[\begin{array}{cc}
\widetilde{K} & \widehat{B}^{T} \tag{17}\\
\widehat{B} & 0
\end{array}\right]\left[\begin{array}{c}
\tilde{x} \\
\lambda
\end{array}\right]=\left[\begin{array}{c}
\tilde{b} \\
0
\end{array}\right], \quad u \in \mathbf{R}^{n}, \lambda \in \mathbf{R}^{m}
$$

from which the solution of the original finite element problem (6) can be obtained by averaging the solution \tilde{x} from (17) in the interface variables. Here, the jump operator \widehat{B} only acts on the variables y_{Δ} and p_{Δ}. The vectors \tilde{x} and \tilde{b} have the form

$$
\begin{aligned}
x^{T} & =\left[\left[y_{I}^{(i) T}, y_{\Delta}^{(i) T}, u_{I}^{(i) T}, p_{I}^{(i) T}, p_{\Delta}^{(i) T}\right], \ldots,\left[y_{I}^{(N) T}, y_{\Delta}^{(N) T}, u_{I}^{(N) T}, p_{I}^{(N) T}, p_{\Delta}^{(N) T}\right],\left[\tilde{y}_{\Pi}^{T}, \tilde{p}_{\Pi}^{T}\right]\right] \\
b^{T} & =\left[\left[c_{I}^{(i) T}, c_{\Delta}^{(i) T}, 0, f_{I}^{(i) T}, f_{\Delta}^{(i) T}\right], \ldots,\left[c_{I}^{(N) T}, c_{\Delta}^{(N) T}, 0, f_{I}^{(N) T}, f_{\Delta}^{(N) T}\right],\left[\tilde{c}_{\Pi}^{T}, \tilde{f}_{\Pi}^{T}\right]\right]
\end{aligned}
$$

After the elimination of x in (17) it remains to solve a system

$$
\begin{equation*}
F \lambda=d \tag{18}
\end{equation*}
$$

where F is symmetric indefinite, i.e., with positive and negative eigenvalues, by a suitable Krylov subspace method. The FETI-DP coarse problem is

$$
\begin{equation*}
\widetilde{S}_{\Pi \Pi}=\widetilde{K}_{\Pi \Pi}-\sum_{i=1}^{N} \widetilde{K}_{B \Pi}^{(i)} \widetilde{K}_{\Pi \Pi}^{(i)} \widetilde{K}_{B \Pi}^{(i) T} \tag{19}
\end{equation*}
$$

To define the Dirichlet preconditioner, we consider the block submatrices of $K^{(i)}$ defined in (9),

$$
K^{(i)}=\left[\begin{array}{cc}
K_{I I}^{(i)} & K_{\Gamma I}^{(i) T} \tag{20}\\
K_{\Gamma I}^{(i)} & K_{\Gamma \Gamma}^{(i)}
\end{array}\right] .
$$

Let us define the Schur complement

$$
\begin{equation*}
S_{\Gamma \Gamma}=\sum_{i=1}^{N}\left(K_{\Gamma \Gamma}^{(i)}-K_{\Gamma I}^{(i)}\left(K_{I I}^{(i)}\right)^{-1} K_{\Gamma I}^{(i) T}\right)=\sum_{i=1}^{N} S_{\Gamma \Gamma}^{(i)}, \tag{21}
\end{equation*}
$$

which can be computed completely in parallel. The Dirichlet preconditioner is then given in matrix form by

$$
\begin{equation*}
M^{-1}=B_{D} \widehat{R}_{\Gamma}^{T} S_{\Gamma \Gamma} \widehat{R}_{\Gamma} B_{D}^{T}=\sum_{i=1}^{N} B_{D}^{(i)} \widehat{R}_{\Gamma}^{(i) T} S_{\Gamma \Gamma}^{(i)} \widehat{R}_{\Gamma}^{(i)} B_{D}^{(i) T} \tag{22}
\end{equation*}
$$

where B_{D} is a variant of the jump operator B scaled by the inverse multiplicity of the node. The matrices $R_{\Gamma}^{(i)}$ are simple restriction operators which restrict the nonprimal degrees of freedom of a subdomain to the interface, i.e. $\widehat{R}_{\Gamma}^{(i)}=\left[\begin{array}{ll}0 & I \\ 0 & 0\end{array}\right]$, if the variables are numbered $[I, \Delta]$ on the right hand side and $[\Delta, \Pi]$ on the left hand side of the operator.

3 Well-posedness of the local problems

In [4] the well-posedness of the local subdomain problems for the balancing Neumann-Neumann method was considered. These considerations are also valid for FETI-1-type methods. In contrast to FETI-1 and Balancing Neumann-Neumann methods the coarse problems of the more recent FETI-DP and BDDC methods are constructed from partial finite element assembly.

We therefore briefly comment on the well-posedness of the subdomain problems, i.e. the local blocks $K_{B B}^{(i)}$ in (14), as well as the coarse problem (19). Each block $K_{B B}^{(i)}$ represents a discrete optimality system local to the subdomain Ω_{i}. In contrast to the original problem (2), natural (stress) boundary conditions are imposed on $\partial \Omega_{i}$ for the state y, except in the (few) primal degrees of freedom on the interface boundary, and except for the degrees of freedom on $\partial \Omega_{i} \cap \partial \Omega_{D}$, where Dirichlet conditions apply. These conditions are sufficient to exclude rigid body motions. Consequently, the local elasticity system (the four A blocks in (15) combined), is well posed, and thus it is straightforward to show that also the optimality system is well posed, whence $K_{B B}^{(i)}$ non-singular. The non-singularity of the total matrix \widetilde{K} in (14) can be shown along the same lines. And thus the non-singularity of the Schur complement (19) follows.

Fig. 1 Model problem: Undeformed configuration, desired state, and solution computed using FETI-DP.

Finally, (21) is well defined since $K_{I I}^{(i)}$ is non-singular. Note that each $K_{I I}^{(i)}$ represents a discrete optimality system with all-Dirichlet boundary conditions on $\partial \Omega_{i}$ for the state and adjoint states, with these boundary degrees of freedom removed.

4 Numerical Results

Here we will report on the use of GMRES applied to the symmetric indefinite FETIDP system (18), using the symmetric indefinite Dirichlet preconditioner (22). Note that there is no theory for the convergence of GMRES in this situation. The numerical results are nevertheless very encouraging. We also report on the convergence of QMR. The stopping criterion is the relative reduction of the preconditioned residual by 10 orders of magnitude. In [5, 4] a symmetric QMR was used for the NeumannNeumann method. The numerical results are nevertheless very encouraging. The iteration counts using QMR and GMRES are very similar.

We consider the volume control of a linear elastic problem on the unit square. The desired displacement y_{d} is a obtained from applying a linear transformation to the unit square, i.e., $y_{d}(x, y)=\left(\frac{2}{5} x, \frac{2}{5} y\right)^{T}$; see Fig. 1. The Dirichlet boundary is on the left. The material data is $E=1$ (Young's modulus) and $v=0.3$ (Poisson's ratio) in all cases, which are related to the Lamé constants via $E=\frac{\mu(2 \mu+3 \lambda)}{\mu+\lambda}$ and $v=\frac{\lambda}{2(\mu+\lambda)}$.

We numerically observe scalability with respect to the number of subdomains as known for CG in the symmetric positive case, i.e., the number of iterations approaches a limit for an increasing number of subdomains N if H / h is maintained fixed, see Tab. 1. Moreover the number of iterations grows only weakly with H / h for a fixed number of subdomains N, see Tab. 2. In Tab. 3 we see that the methods shows robustness with respect to α. In Tab. 4 we report on the strong parallel scalability of the largest problem from Tab. 2 using the GMRES implementation from PETSc [1]. We have used UMFPACK 4.3 [2] for the solution of the subdomain problems.

DIRICHLET PRECONDITIONER - Weak Scaling - GMRES and QMR

Table 1 Weak scaling. The number of GMRES and QMR iterations is scalable with respect to the number of subdomains, i.e., it is bounded independently of $N . \alpha=0.01$. Material parameters $E=1, v=0.3$. The iteration is stopped when the preconditioned residual has been reduced by 10 orders of magnitudes. The largest problem has $2101252=4 \times 263169+2 \times 524288$ d.o.f.

References

1. Balay, S., Brown, J., , Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc users manual. Tech. Rep. ANL-95/11Revision 3.3, Argonne National Laboratory (2012)
2. Davis, T.A.: A column pre-ordering strategy for the unsymmetric-pattern multifrontal method. ACM Trans. Math. Software 30(2), 167-195 (2004). DOI 10.1145/992200.992205
3. Farhat, C., Lesoinne, M., LeTallec, P., Pierson, K., Rixen, D.: FETI-DP: a dual-primal unified FETI method. I. A faster alternative to the two-level FETI method. Internat. J. Numer. Methods Engrg. 50(7), 1523-1544 (2001). DOI 10.1002/nme. 76
4. Heinkenschloss, M., Nguyen, H.: Balancing Neumann-Neumann methods for elliptic optimal control problems. In: Domain decomposition methods in science and engineering, Lect. Notes Comput. Sci. Eng., vol. 40, pp. 589-596. Springer, Berlin (2005)
5. Heinkenschloss, M., Nguyen, H.: Neumann-Neumann domain decomposition preconditioners for linear-quadratic elliptic optimal control problems. SIAM J. Sci. Comput. 28(3), 1001-1028 (2006). DOI 10.1137/040612774
6. Klawonn, A., Rheinbach, O.: Highly scalable parallel domain decomposition methods with an application to biomechanics. ZAMM Z. Angew. Math. Mech. 90(1), 5-32 (2010). DOI 10. 1002/zamm.200900329. URL http://dx.doi.org/10.1002/zamm. 200900329
7. Klawonn, A., Widlund, O.B.: Dual-primal FETI methods for linear elasticity. Comm. Pure Appl. Math. 59(11), 1523-1572 (2006). DOI 10.1002/cpa.20156. URL http: / / dx. doi . org/10.1002/cpa. 20156
8. Mandel, J., Tezaur, R.: On the convergence of a dual-primal substructuring method. Numer. Math. 88(3), 543-558 (2001). DOI 10.1007/s211-001-8014-1
9. Mathew, T.P., Sarkis, M., Schaerer, C.E.: Analysis of block matrix preconditioners for elliptic optimal control problems. Numer. Linear Algebra Appl. 14(4), 257-279 (2007)

DIRICHLET PRECONDITIONER - GMRES and QMR

H/h	\#Points	\#Elem \#	res		\#Points	\#Elem \#	res	qmr	\#Points	\#Elem	res	
	$N=2 \times 2$				$N=3 \times 3$				$N=4 \times 4$			
2	25	32	8	9	49	72	12	13	81	128	14	14
4	81	128	11	11	169	288	16	17	289	512	19	20
6	169	288	12	12	361	648	18	19	625	1152	23	24
8	289	512	13	14	625	1152	20	21	1089	2048	25	27
12	625	1152	14	14	1369	2592	23	25	2401	4608	28	31
16	1089	2048	14	15	2401	4609	25	27	4225	8192	31	34
24	2401	4608	16	16	5329	10368	28	30	9409	18432	35	36
32	4225	8192	16	17	9409	18432	29	30	16641	32768	37	38
48	9409	18432	17	18	21025	41472	32	33	37249	73728	40	43
64	16641	32768	18	19	37249	73728	33	35	66049	131072	43	45
96	37249	73728	19	19	83521	165888	34	38	148225	294912	46	50
128	66049	131072	19	20	148225	294912	36	39	263169	524288	49	52

Table 2 The number of GMRES and QMR iterations grows only weakly with the subdomain size. $\alpha=0.01$. Material parameters $E=1, v=0.3$. The iteration is stopped when the preconditioned residual has been reduced by 10 orders of magnitudes. The largest problem has $2102452=2 \times$ $2 \times 263169+524288$ d.o.f.

DIRICHLET PRECONDITIONER

- GMRES and QMR

N	H / h	α	$\#$ gmres	\#qmr
8×8	4	1	$\mathbf{1 9}$	$\mathbf{2 0}$
8×8	4	0.1	$\mathbf{2 2}$	$\mathbf{2 2}$
8×8	4	0.01	$\mathbf{2 4}$	$\mathbf{2 5}$
8×8	4	0.001	$\mathbf{2 3}$	$\mathbf{2 4}$
8×8	4	0.0001	$\mathbf{1 9}$	$\mathbf{2 1}$

Table 3 Dependence on α. The preconditioner is robust with respect to the choice of the cost parameter $\alpha>0$.

\#Cores	N	H / h	\#Points	\#Elem	d.o.f.	\#gmres Time	
1	4×4	64	66049	131072	526340	49	$89.7 s$
2	4×4	64	66049	131072	526340	49	$45.6 s$
4	4×4	64	66049	131072	526340	49	$23.9 s$
8	4×4	64	66049	131072	526340	49	$14.2 s$
16	4×4	64	66049	131072	526340	49	$10.7 s$

Table 4 Strong parallel scalability on a 16 core Opteron 8380 server (2.5 Ghz) for one of the problems from Tab. 2.
10. Schöberl, J., Simon, R., Zulehner, W.: A robust multigrid method for elliptic optimal control problems. SIAM J. Numer. Anal. 49(4), 1482-1503 (2011)
11. Schöberl, J., Zulehner, W.: Symmetric indefinite preconditioners for saddle point problems with applications to PDE-constrained optimization problems. SIAM J. Matrix Anal. Appl. 29(3), 752-773 (electronic) (2007)

[^0]: ${ }^{1}$ Fakultät für Mathematik, Technische Universität Chemnitz, 09107 Chemnitz, Germany.
 ${ }^{2}$ Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln, Germany.
 orheinba@mi.uni-koeln.de, roland.herzog@mathematik.tu-chemnitz.de

