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1 Introduction

In the simulation of flow and transport of hydrocarbons in reservoirs, locally mass
conservative methods are preferred. Methods that do not satisfy this property, will
produce numerical mass errors that accumulate and will yield an unstable solution.
Currently, finite volume methods are popular numerical methods in the oil industry.
While they are computationally efficient, they are only of first order. Convergence
of cell-centered finite volume solutions is theoretically obtained on specially con-
structed grids (such as Voronoi meshes) and for problems with no mixed second
derivatives [3, 4, 8, 12, 6]. Discontinuous Galerkin methods also belong to the class
of locally mass conservative methods. In addition, their flexibility allows for the use
of complicated geometries, unstructured meshes, varying polynomial degrees and
discontinuous coefficients. Discontinuous Galerkin solutions are accurate but their
cost can be large as it is proportional to the the number of mesh elements (also called
cells). In this paper, discontinuous Galerkin methods are used in certain parts of the
domain whereas the cell-centered finite volume method is used in other parts. The
model problem is a convection-diffusion problem in a bounded domain Ω ⊂ Rd ,
d = 2,3.

−∇ · (K∇u−βu) = f , in Ω , (1)
u = g, on ∂Ω . (2)

The spatially dependent coefficient K is bounded below and above by positive con-
stants k0 and k1 respectively. The convective vector β is assumed to be divergence-
free: ∇ ·β = 0.

The computational domain is partitioned into several subdomains. On each sub-
domain, either a discontinuous Galerkin method is used or a cell-centered finite vol-
ume is used. The advantage of a multinumeric approach lies in the ability of choos-
ing a particular scheme for a particular subdomain. The discontinuous Galerkin
method can yield accurate solutions in parts of the domain where the permeability of
the porous medium varies over several orders of magnitude or in parts of the domain
where anisotropy is important. In this work, the coupling of the two discretizations
is done weakly by interface conditions. Two equivalent formulations are presented:
a monolithic approach and an hybridized approach with Lagrange multipliers. This
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paper extends the result of [2] where the elliptic problem is analyzed. In [11], we
apply the method to a transport equation. The idea of using different discretizations
in different subdomains is well studied in the literature. For instance, the reader can
refer to [1, 5, 10, 7].

An outline of the paper is the following. Section 2 defines first the discontinuous
Galerkin and finite volume discretizations in each subdomain, then the coupling
of the subdomains. Section 3 states the convergence of the method. Conclusions
follow.

2 A multinumeric approach

The domain Ω is subdivided into non-overlapping subdomains Ω i
FV and Ω i

DG. Our
proposed multinumerics scheme uses a finite volume method (FV) on the union of
Ω i

FV , denoted by ΩF , and a discontinuous Galerkin (DG) method on the union of
Ω i

DG, denoted by ΩD. Let E h
D (resp. E h

F ) be a subdivision of ΩD (resp. ΩF ) made
of cells V (Voronoi cells in ΩF and either triangles/tetrahedra/hexaedra or Voronoi
cells in ΩD). We also denote by hF (resp. hD) the maximum diameter over all cells
in ΩF (resp. ΩD) and we let h = max(hF ,hD). We assume that the meshes match at
the interface ΓDF defined as:

ΓDF = ∪i(∂Ω
i
DG∩∂Ω

i
FV )

The definition of the mesh E h
F requires further notation. It is assumed that E h

F is an
admissible finite volume mesh, in the following sense:
(i) There is a family of nodes {xV : V ∈ E h

F } such that xV belongs to V and if a
face γ is shared by two neighboring cells V and W , it is assumed that xW and xV are
distinct, and that the straight line going through xV and xW is orthogonal to γ .
(ii) For any boundary face γ = ∂V ∩ ∂Ω for some V in E h

F , it is assumed that xV
does not lie on γ . However this condition can be relaxed.
We denote by Γ

h,I
F the set of faces that belong to the interior of ΩF and by Γ

h,∂
F the

set of boundary faces that belong to ∪i(∂Ω i
FV ∩∂Ω). Similarly, the sets of interior

and boundary faces of ΩD are denoted by Γ
h,I

D and Γ
h,∂

D respectively. We also
define Γ h

F = Γ
h,I

F ∪Γ
h,∂

F and Γ h
D = Γ

h,I
D ∪Γ

h,∂
D . There remains the set of faces that

belong to the interface ΓDF; this particular set will be denoted by Γ h
DF. We further

decompose the boundary of Ω into inflow and outflow boundaries. The unit normal
vector outward of Ω is denoted by n.

Γ
h,∂−

D = {x ∈ Γ
h,∂

D , β ·n≤ 0}, Γ
h,∂+

D = Γ
h,∂

D \Γ
h,∂−

D .

Γ
h,∂−

F = {x ∈ Γ
h,∂

F , β ·n≤ 0}, Γ
h,∂+

F = Γ
h,∂

F \Γ
h,∂−

F .

We now define a parameter dγ that is associated to each face γ in Γ h
F ∪Γ h

DF. If the
face γ is an interior face shared by two cells V and W in E h

F , the parameter dγ is the
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Euclidean distance between the nodes xV and xW : dγ = d(xV ,xW ). If the face γ is
a boundary face (γ ⊂ ∂V ∩∂Ω ), the parameter dγ is the distance between the node
xV and the face γ , in other words dγ = d(xV ,yγ), where yγ denotes the non-empty
intersection between the straight line going through xV and orthogonal to γ . Finally,
if the face γ lies on the interface ΓDF and is shared by a cell V in E h

F and a cell W
in E h

D, the parameter dγ is defined to be the distance between the node xV and the
edge γ . As in the boundary case, we can denote by yγ the intersection between the
straight line going through xV and perpendicular to γ . Then, we have dγ = d(xV ,yγ).

An admissible mesh in the finite volume regions is such that there is some posi-
tive number θ > 0 such that

dγ ≥ θ max(hV ,hW ), ∀γ ∈ Γ
h,I

F , γ = ∂V ∩∂W,

dγ ≥ θhV , ∀γ ∈ Γ
h,∂

F , γ = ∂V ∩∂Ω ,

dγ ≥ θhV , ∀γ ∈ Γ
h

DF, γ = ∂V ∩∂W, V ∈ E h
F ,W ∈ E h

D.

A standard harmonic average of the diffusion coefficient K is now defined:

Kγ = dγ

∣∣∣∣∫ xW

xV

ds
K(s)

∣∣∣∣−1

, ∀γ ∈ Γ
h,I

F , γ = ∂V ∩∂W,

Kγ = dγ

∣∣∣∣∫ yγ

xV

ds
K(s)

∣∣∣∣−1

, ∀γ ∈ Γ
h,∂

F , γ = ∂V ∩∂Ω ,

Kγ = dγ

∣∣∣∣∫ yγ

xV

ds
K(s)

∣∣∣∣−1

, ∀γ ∈ Γ
h

DF, γ = ∂V ∩∂W, V ∈ E h
F ,W ∈ E h

D.

It is easy to see that Kγ is bounded above and below by k1 and k0 respectively. We
denote by |γ| the measure of the face γ .

Let XDG be the space of discontinuous piecewise polynomials of degree r ≥
1 in the DG subdomains. Let XFV be the space of piecewise constants in the FV
subdomains. The restriction of the numerical solution to the DG subdomains (resp.
FV subdomains) is denoted by uDG (resp. uFV ).

2.1 Bilinear Forms

The differential operators are discretized by an interior penalty discontinuous Galerkin
method in some subdomains and by a cell-centered finite volume method in other
subdomains.

First, we define the jump of any discontinuous piecewise polynomial function.
For any face γ , we fix a unit normal vector nγ to γ . If γ is a boundary face, then nγ

is the outward normal to Ω . If γ belongs to the interface Γ h
DF, then the vector nγ is

chosen to point from the DG region into the FV region. In the definition of the jump
[v] of a function v given below, we assume that the face γ is shared by two cells V
and W , and that the normal vector nγ points from V into W . For the interior faces,
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we define

[v]|γ = v|V − v|W , γ ∈ Γ
h,I

F ∪Γ
h,I

D , γ = ∂V ∩∂W

For the boundary faces, we define

[v]|γ = v|V , γ ∈ Γ
h,∂

F ∪Γ
h,∂

D , γ = ∂V ∩∂Ω .

In the definitions above, it is understood that v|W = v(xW ) if W is a cell in the FV
subdomains.

The average of a discontinuous function v on a face is denoted by {v} and defined
below:

{v}|γ =
1
2
(v|V + v|W ), ∀γ = ∂V ∩∂W,

{v}|γ = v|V , ∀γ = ∂V ∩∂Ω .

Finally we define the upwind v↑ on the faces. For a given face γ in Γ h
D ∪Γ h

F ∪Γ h
DF

shared by cells V and W such that nγ points from V into W , we have

v↑ =
{

v|V if β ·nγ ≥ 0,
v|W if β ·nγ < 0.

In what follows, we derive the bilinear forms corresponding to each subdomain.
First, we multiply (1) by a function v ∈ XDG, integrate over one DG cell V :∫

V
(K∇u−βu) ·∇v−

∫
∂V

(K∇u−βu) ·nV v =
∫

V
f v

We sum over all the cells in all the DG subdomains, use the definition of the normal
vector nγ and the regularity of the exact solution to obtain:

∑
V∈E h

D

∫
V
(K∇u−βu) ·∇v− ∑

γ∈Γ
h,I

D

∫
γ

({K∇u}−βu↑) ·nγ [v]

− ∑
γ∈Γ

h,∂
D ∪Γ h

DF

∫
γ

(K∇u−βu) ·nγ v = ∑
V∈E h

D

∫
V

f v

Stabilization terms are added for the interior penalty discontinuous Galerkin method.
The penalty parameter is denoted by σ > 0 and the symmetrization parameter by
ε ∈ {−1,+1}. The penalty parameter is assumed to be large enough if ε =−1 and
is taken equal to 1 if ε = +1. The parameter hγ denotes the maximum diameter of
the neighboring cells V and W , that share the face γ .

∑
V∈E h

D

∫
V
(K∇u−βu) ·∇v− ∑

γ∈Γ h
D

∫
γ

(
{K∇u ·nγ}[v]− ε{K∇v ·nγ}[u]

)
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+ ∑
γ∈Γ h

D

σh−1
γ

∫
γ

[u][v]+ ∑
γ∈Γ

h,I
D

∫
γ

β ·nγ u↑[v]+ ∑
γ∈Γ

h,∂
D

∫
γ

β ·nγ uv

− ∑
γ∈Γ h

DF

∫
γ

(K∇u−βu) ·nγ v = ∑
V∈E h

D

∫
V

f v+ ε ∑
γ∈Γ

h,∂
D

∫
γ

{K∇v ·nγ}g

+ ∑
γ∈Γ

h,∂
D

σh−1
γ

∫
γ

gv

From this derivation, we define the bilinear form for the DG subdomains as:

aDG(u,v) = ∑
V∈E h

D

∫
V
(K∇u−βu) ·∇v− ∑

γ∈Γ h
D

∫
γ

(
{K∇u ·nγ}[v]− ε{K∇v ·nγ}[u]

)
+ ∑

γ∈Γ h
D

σh−1
γ

∫
γ

[u][v]+ ∑
γ∈Γ

h,I
D

∫
γ

β ·nγ u↑[v]+ ∑
γ∈Γ

h,∂+
D

∫
γ

β ·nγ uv

+ ∑
γ∈Γ h

DF

|γ|
dγ

Kγ u(yγ)v(yγ)+ ∑
γ∈Γ h

DF

∫
γ+

β ·nγ uv

In the last term, the subset of a face γ on which β ·nγ is non-negative is denoted by
γ+. This corresponds to the outflow part of the face. The inflow part is denoted by
γ−.

Second, we multiply (1) by a function v ∈ XFV , that is piecewise constant, inte-
grate over one FV cell V :

−
∫

∂V
(K∇u−βu) ·nV v =

∫
V

f v

We sum over all the FV cells and use the regularity of the exact solution:

∑
γ∈Γ

h,I
F

∫
γ

(−K∇u ·nγ +β ·nγ u↑)[v]+ ∑
γ∈Γ

h,∂
F

∫
γ

(−K∇u ·nγ +β ·nγ u)v

+ ∑
γ∈Γ h

DF

∫
γ

(K∇u−βu) ·nγ v = ∑
V∈E h

F

∫
V

f v

A cell-centered finite difference approximation is used to approximate the flux
across the faces. Therefore we define the bilinear form in the FV regions as:

aFV(u,v) = ∑
γ∈Γ h

F

|γ|
dγ

Kγ [u][v]+ ∑
γ∈Γ

h,I
F

∫
γ

β ·nγ u↑[v]+ ∑
γ∈Γ

h,∂+
F

∫
γ

β ·nγ uv

+ ∑
γ∈Γ h

DF

|γ|
dγ

Kγ uv− ∑
γ∈Γ h

DF

∫
γ−

β ·nγ uv
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Finally the source function f and the boundary conditions are handled by the fol-
lowing bilinear forms:

`DG(v) =
∫

ΩD

f v+ ε ∑
γ∈Γ

h,∂
D

∫
γ

K∇v ·nγ g+ ∑
γ∈Γ

h,∂
D

σh−1
γ

∫
γ

gv− ∑
γ∈Γ

h,∂−
D

∫
γ

β ·nγ gv

`FV (v) =
∫

ΩF

f v+ ∑
γ∈Γ

h,∂
F

|γ|
dγ

Kγ g(yγ)v− ∑
γ∈Γ

h,∂−
F

∫
γ

β ·nγ gv.

2.2 A monolithic formulation

The definition of the multinumeric scheme, without Lagrange multipliers, is given
in this section. Existence and uniqueness of the solution is shown.

The numerical method is as follows: find uDG ∈ XDG, uFV ∈ XFV such that

aDG(uDG,vDG) = `DG(vDG)+ ∑
γ∈Γ h

DF

|γ|
dγ

Kγ uFV vDG(yγ)− ∑
γ∈Γ h

DF

∫
γ−

β ·nγ uFV vDG,(3)

aFV (uFV ,vFV ) = `FV (vFV )+ ∑
γ∈Γ h

DF

|γ|
dγ

Kγ uDG(yγ)vFV + ∑
γ∈Γ h

DF

∫
γ+

β ·nγ uDGvFV ,(4)

for all vDG ∈ XDG and all vFV ∈ XFV .

Lemma 1. There exists a unique solution (uDG,uFV ), satisfying (3)-(4).

Proof. Let us assume that f = g = 0 and take vDG = uDG and vFV = uFV in (3)-(4).
We have

aDG(uDG,uDG)+aFV (uFV ,uFV ) = 2 ∑
γ∈Γ h

DF

|γ|
dγ

Kγ uFV uDG(yγ)+ ∑
γ∈Γ h

DF

∫
γ

|β ·nγ |uDGuFV .

We expand the DG form:

aDG(uDG,uDG) = ∑
V∈E h

D

‖K1/2
∇uDG‖2

L2(V )+ ∑
γ∈Γ h

D

σh−1
γ ‖[uDG]‖2

L2(γ)

+ ∑
γ∈Γ h

DF

|γ|
dγ

Kγ uDG(yγ)
2− (1− ε) ∑

γ∈Γ h
D

∫
γ

{K∇uDG ·nγ}[uDG]− ∑
V∈E h

D

∫
V

βuDG ·∇uDG

+ ∑
γ∈Γ

h,I
D

∫
γ

β ·nγ u↑DG[uDG]+ ∑
γ∈Γ

h,∂+
D

∫
γ

β ·nγ u2
DG + ∑

γ∈Γ h
DF

∫
γ+

β ·nγ u2
DG

Using standard techniques to DG methods [9], one can show that
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− ∑
V∈E h

D

∫
V

βuDG ·∇uDG + ∑
γ∈Γ

h,I
D

∫
γ

β ·nγ u↑DG[uDG]+ ∑
γ∈Γ

h,∂+
D

∫
γ

β ·nγ u2
DG

=
1
2 ∑

γ∈Γ h
D

‖|β ·nγ |1/2[uDG]‖2
L2(γ)−

1
2 ∑

γ∈Γ h
DF

∫
γ

β ·nγ u2
DG

In addition, we can show that there is a constant M > 0 independent of h such that

∑
V∈E h

D

‖K1/2
∇uDG‖2

L2(V )+ ∑
γ∈Γ h

D

σh−1
γ ‖[uDG]‖2

L2(γ)− (1− ε) ∑
γ∈Γ h

D

∫
γ

{K∇uDG ·nγ}[uDG]

≥M

 ∑
V∈E h

D

‖K1/2
∇uDG‖2

L2(V )+ ∑
γ∈Γ h

D

σh−1
γ ‖[uDG]‖2

L2(γ)


For the FV bilinear form, we have

aFV(uFV ,uFV ) = ∑
γ∈Γ h

F

|γ|
dγ

Kγ [uFV ]
2 + ∑

γ∈Γ
h,I

F

∫
γ

β ·nγ u↑FV [uFV ]+ ∑
γ∈Γ

h,∂+
F

∫
γ

β ·nγ u2
FV

+ ∑
γ∈Γ h

DF

|γ|
dγ

Kγ u2
FV − ∑

γ∈Γ h
DF

∫
γ−

β ·nγ u2
FV

We observe that, if u↓FV denotes the downwind value of uFV , we have

∑
γ∈Γ

h,I
F

∫
γ

β ·nγ u↑FV [uFV ] =
1
2 ∑

γ∈Γ
h,I

F

‖|β ·nγ |1/2[uFV ]‖2
L2(γ)

+
1
2 ∑

γ∈Γ
h,I

F

∫
γ

|β ·nγ |((u↑FV )
2− (u↓FV )

2)

Since β is divergence-free, we obtain

∑
γ∈Γ

h,I
F

∫
γ

β ·nγ u↑FV [uFV ] =
1
2 ∑

γ∈Γ
h,I

F

‖|β ·nγ |1/2[uFV ]‖2
L2(γ)

−1
2 ∑

γ∈Γ
h,∂

F

∫
γ

β ·nγ u2
FV +

1
2 ∑

γ∈Γ h
DF

∫
γ

β ·nγ u2
FV

Combining the results above yields

M ∑
V∈E h

D

‖K1/2
∇uDG‖2

L2(V )+M ∑
γ∈Γ h

D

σh−1
γ ‖[uDG]‖2

L2(γ)+
1
2 ∑

γ∈Γ h
D

‖|β ·nγ |1/2[uDG]‖L2(γ)
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+ ∑
γ∈Γ h

F

|γ|
dγ

Kγ [uFV ]
2 +

1
2 ∑

γ∈Γ
h,I

F

‖|β ·nγ |1/2[uFV ]‖2
L2(γ)+

1
2 ∑

γ∈Γ
h,∂

F

∫
γ

|β ·nγ |u2
FV

+ ∑
γ∈Γ h

DF

|γ|
dγ

Kγ(uDG(yγ)−uFV )
2 +

1
2 ∑

γ∈Γ h
DF

∫
γ

|β ·nγ |(uDG−uFV )
2 ≤ 0

The inequality above immediately implies that uDG and uFV are zero everywhere.
Thus, we have proved uniqueness of the solution. Since the finite-dimensional prob-
lem is linear, this is equivalent to showing existence of the solution.

2.3 Formulation with Lagrange multipliers

In this section, we rewrite the method (3)-(4) in a hybridized form for the elliptic
problem. Lagrange multipliers are defined on the interface between the subdomains.

Let Λ 0
h ⊂ L2(Γ12) be the finite dimensional space of piecewise constants on the

partition of Γ12. Assume that the convection vector β is zero. The hybridized DG-FV
scheme becomes: solve for uDG ∈ XDG, uFV ∈ XFV, λDG ∈Λ 0

h , λFV ∈Λ 0
h satisfying

aDG(uDG,vDG) = `DG(vDG)+ ∑
γ∈Γ h

DF

|γ|
dγ

Kγ λFV vDG(yγ), ∀v ∈ XDG (5)

aFV (uFV ,vFV ) = `FV (vFV )+ ∑
γ∈Γ h

DF

|γ|
dγ

Kγ λDGvFV , ∀v ∈ XFV (6)

∑
γ∈Γ h

DF

∫
γ

(λDG−uDG(yγ))µ = 0, ∀µ ∈Λ
0
h (7)

∑
γ∈Γ h

DF

∫
γ

(λFV −uFV )µ = 0, ∀µ ∈Λ
0
h (8)

Lemma 2. There exists a unique solution to (5)-(8)

Proof. To show uniqueness of the solution, we assume that f = g = 0 and take
vDG = uDG and vFV = uFV in (5) and (6). We observe that (7) and (8) imply that

λDG|γ = uDG(yγ), λFV |γ = uFV , ∀γ ∈ Γ
h

DF

The rest of the proof follows the proof of Lemma 1.
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3 Error analysis

In this section, convergence of the multinumeric approach is shown under some
regularity assumptions of the exact solution.

Assume that the relative gradient of the exact solution near the interfaces with
respect to the gradient in the DG subdomains is small. In particular, given a face
γ ∈ Γ h

DF that belongs to a DG cell denoted by Vγ , assume that there is a constant C
independent of hD such that

( ∑
γ ∈ Γ h

DF

‖∇u‖2
L2(Vγ )

)1/2 ≤ChD( ∑
V∈E h

D

‖∇u‖2
L2(V ))

1/2 (9)

This assumption is an indicator on how to choose the interface. We want to place
the interface where the exact solution does not vary as much as it does in the interior
of the discontinuous Galerkin domain. In the simple case where the exact solution
is linear and its gradient is uniformly constant, this assumption is not satisfied (see
remark 1).

We recall that by convention, the jump [u−uFV ] on an edge that belongs to Γ h
F is

the difference between u(xV )−uFV (xV ) and u(xW )−uFV (xW ) if the edge is shared
by the Voronoi cells V and W .

Theorem 1. Assume that u belongs to H2(Ω) and that u|ΩD belongs to Hr+1(E h
D),

for r≥ 1. Under the assumption (9), there exists a constant C independent of h such
that

∑
V∈E h

D

‖K1/2
∇(u−uDG)‖2

L2(V )+ ∑
γ∈Γ h

D

σh−1
γ ‖[u−uDG]‖2

L2(γ)+ ∑
γ∈Γ h

F

γ

dγ

Kγ [u−uFV ]
2

+ ∑
γ∈Γ h

D

‖|β ·nγ |1/2[u−uDG]‖2
L2(γ)+ ∑

γ∈Γ h
F

‖|β ·nγ |1/2[u−uDG]‖2
L2(γ)

+ ∑
γ∈Γ h

DF

|γ|
dγ

Kγ(uDG(yγ)−uFV )
2 ≤C(h2

D +h2
F)

Proof. An outline of the proof is given. First we observe that the scheme (3)-(4)
is not consistent because of the use of finite difference approximations in the FV
subdomains and on the interfaces between the subdomains. We introduce an optimal
approximation, ũ, of the exact solution such that ũ|ΩD (resp. ũ|ΩF ) belongs to XDG

(resp. XFV ). We define

χDG = uDG− ũ|ΩD , χFV = uFV − ũ|ΩF , ξ = u− ũ

An error equation can be obtained:

aDG(χDG,vDG)+aFV (χFV ,vFV )+ ∑
γ∈Γ h

DF

∫
γ−

β ·nγ χFV vDG− ∑
γ∈Γ h

DF

|γ|
dγ

Kγ χFV vDG(yγ)
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− ∑
γ∈Γ h

DF

∫
γ+

β ·nγ χDGvFV − ∑
γ∈Γ h

DF

|γ|
dγ

Kγ χDG(yγ)vFV = aDG(ξDG,vDG)+aFV (ξFV ,vFV )

+ ∑
γ∈Γ h

DF

∫
γ−

β ·nγ ξ |ΩF vDG− ∑
γ∈Γ h

DF

|γ|
dγ

Kγ ξ |ΩF vDG(yγ)− ∑
γ∈Γ h

DF

∫
γ+

β ·nγ ξ |ΩDvFV

− ∑
γ∈Γ h

DF

|γ|
dγ

Kγ ξ |ΩD(yγ)vFV +R,

where R is a residual term resulting from the consistency error. An expression for R
is:

R = ∑
γ∈Γ h

F

Rγ(u)[vFV ]+ ∑
γ∈Γ h

DF

∫
γ

K∇u ·nγ(vDG− vDG(yγ))

+ ∑
γ∈Γ h

DF

∫
γ

Rγ(u)(vDG(yγ)− vFV ) (10)

The residual quantities Rγ(u) are defined on the interior faces of the FV subdomains
as

Rγ(u) =−
∫

γ

K∇u ·nγ −
|γ|
dγ

Kγ(u(xV )−u(xW )), ∀γ = ∂V ∩∂W ∀γ ∈ Γ
h,I

F

This expression is slightly modified for the exterior boundary faces of the FV sub-
domains:

Rγ(u) =−
∫

γ

K∇u ·nγ −
|γ|
dγ

Kγ(u(xV )−g(yγ)), ∀γ = ∂V, ∀γ ∈ Γ
h,∂

F

For the interfaces between the FV and DG subdomains, the residual term is defined
as

Rγ(u) =−K∇u ·nγ −
Kγ

dγ

(u(yγ)−u(xW )), ∀γ ∈ ∂W,W ∈ E h
F , ∀γ ∈ Γ

h
DF

Next, we choose vDG = χDG and vFV = χFV in the error equation. The error estimate
follows by using trace inequalities, approximation results, and the following bounds
on the residuals, that involve the Hessian matrix H(u) (see [3]):

|Rγ(u)|2 ≤C
h2

F |γ|
dγ

∫
Vγ

|H(u)|2, ∀γ ∈ Γ
h

F(∫
γ

|Rγ(u)|
)2

≤C
h2

F |γ|
dγ

∫
Vγ

|H(u)|2, ∀γ ∈ Γ
h

DF

The Hessian is integrated over the region Vγ defined by
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Vγ = VW,γ ∪VV,γ , ∀γ = ∂V ∩∂W

with
VW,γ = {txW +(1− t)x : x ∈ γ, t ∈ [0,1]}

Remark 1. If the assumption (9) is removed, the multinumeric approach converges
suboptimally. Indeed, there is a loss of h1/2

D in the bound of the last term in the
definition of the residual in (10).

4 Conclusions

Cell-centered finite volume methods use Voronoi cells for unstructured meshes. Dis-
continuous Galerkin methods converge on general mesh elements including Voronoi
grids. In addition, for two-dimensional problems, Voronoi cells can naturally and
easily be partitioned into triangles by using the underlying Delaunay triangulation.
In this work, we formulate and analyze a method that couples DG and FV methods
via mesh interfaces. One appealing feature of the method is that, once a Voronoi
grid is built, the decomposition of the domain into DG regions and FV regions is
done easily and this decomposition can vary with each simulation.
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