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1 Introduction

Libraries to solve problems arising from partial differential equations (PDEs) through
generalized Galerkin methods are a common tool among mathematicians and engi-
neers. However, most libraries end up specializing in a type of equation, e.g. Navier-
Stokes or linear elasticity models, or a specific type of numerical method, e.g. finite
elements. The increasing complexity of differential models and the implementation
of state of the art robust numerical methods, demand from scientific computing plat-
forms general and clear enough languages to express such problems and provide
a wealth of solution algorithms available in a minimal amount of code but maxi-
mum mathematical control. There are many freely available libraries which offer
the capabilities described previously to a certain extent. To name a few: the Freefem
software family [6, 9], the Fenics project [10], Getdp [8] or Getfem++ [17], or li-
braries or frameworks such as deal.II (C++) [2], Sundance (C++) [11], Analysa
(Scheme) [1].

The library we present in this paper, called FEEL++, Finite Element Embedded
Language in C++, see [14, 15], provides also a clear and easy to use interface to
solve complex PDE systems. It aims at bringing the scientific community a tool for
the implementation of advanced numerical methods and high performance comput-
ing. Some recent applications of FEEL++ to multiphysics problems can be found in
the literature, see e.g. [13, 7, 5].

FEEL++ relies on a so-called domain specific embedded language (DSEL) de-
signed to closely match the Galerkin mathematical framework. In computer science,
DS(E)Ls are used to partition complexity and in our case the DSEL splits low level
mathematics and computer science on one side leaving the FEEL++ developer to
enhance them and high level mathematics as well as physical applications to the
other side which are left to the FEEL++ user. This enables using FEEL++ for teach-
ing purposes, solving complex problems with multiple physics and scales or rapid
prototyping of new methods, schemes or algorithms.

The DSEL on FEEL++ provides access to powerful, yet with a simple and seam-
less interface, tools such as interpolation or the clear translation of a wide range
of variational formulations into the variational embedded language. Combined with
this robust engine, lie also state of the art arbitrary order finite elements — including
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handling high order geometrical approximations, — high order quadrature formulas
and robust nodal configuration sets. The tools at the user’s disposal grant the flexibil-
ity to implement numerical methods that cover a large combination of choices from
meshes, function spaces or quadrature points using the same integrated language
and control at each stage of the solution process the numerical approximations.

This paper presents our ongoing work on building a computational framework
for domain decomposition methods in FEEL++ including overlapping and nonover-
lapping Schwarz methods (conforming and non-conforming) and mortar method.
The complete examples are available in FEEL++ sources. Note that examples using
the three fields method are also available in FEEL++.

The framework main objectives consist in (i) reproducing and comparing easily
several of methods in the literature (ii) developing a teaching and research program-
ming environment (iii) providing the methods at the functional level or at the alge-
braic level. In this context we have also developed also two alternatives: one which
lets the user control the MPI communications and one which hides completely the
MPI communications.

2 Schwarz Methods

Let Ω be a domain of Rd , d = 1,2,3, and ∂Ω its boundary. We look for u the
solution of the problem:

Lu = f in Ω , u = g on ∂Ω (1)

where L is a linear partial differential operator, and f and g are given func-
tions. Let Ωi(i = 1, ...,N, N ∈ N, N ≥ 2) the subdomain partitions of Ω such that
Ω = ∪N

i=1Ω i and Γi j = ∂Ωi ∩Ω j the interface between neighboring subdomains
Ωi and Ω j. We denote VΩi the set of neighbors subdomains of Ωi. In the case
of nonoverlapping subdomains Γi j = Γji. We are interested in the overlapping and
nonoverlapping alternating Schwarz methods[16, 19] as solver in the general non-
matching grids and arbitrary number of subdomains. The generic Schwarz additive
algorithm is given by (2) where u0

i is known on Γi j, j ∈ VΩi , k ≥ 1 the Schwarz
iteration index and Ci is a partial differential operator.

Luk
i = f in Ωi, uk

i = g on ∂Ωi \Γi j, Ciuk
i =Ciuk−1

j on Γi j (2)

The algorithm (2) extends easily to the multiplicative version of Schwarz meth-
ods and treats different types of artificial boundary conditions such as Dirichlet-
Dirichlet (DD), Dirichlet-Neumann (DN), Neumann-Neumann (NN) and Robin-
Robin (RR) (see [20, 16, 19]) according the choice of the operator Ci that is assumed
linear in our case. The above algorithm can also adapt to relaxation techniques(see
[16]) necessary for the convergence of some types of interface conditions such as
DN and NN without overlap.
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In the following subsections 2.1 and 2.2, we discuss two different approaches for
Schwarz methods in FEEL++ namely with explicit communications and with seam-
less communications. In the first approach, we deal different types of Schwarz meth-
ods(Additive, Multiplicative, with(out) Relaxation) with different artificial bound-
ary conditions(DD, DN, NN, RR) while having the ability to process (non-)conforming
meshes as well as being able to control the size of the overlap between neighboring
subdomains. In the second approach, we use the parallel data structures of FEEL++
and the algebraic domain decomposition framework provided by PETSC.

2.1 Explicit Communication Approach

The Schwarz methods are used as solvers and the communications are handled ex-
plicitly by the user. Implementation-wise we use PETSC sequentially even though
the code is parallel using mpi communicators. It requires explicitly sending and
receiving complex data structures such as mesh data structures and elements of
functions space(traces). A sequential interpolation operator is also used to make
the transfer between the grids (overlapping or not, conforming or not). In this case
each subdomain creates locally its mesh and its function space, the matrices and
vectors associated to the discretization process are completely local.

The variational formulation of the problem (2) in the simplest form (L :=−∆ ) in
the subdomain Ωi at iteration number k using Nitsche’s method (see [12]) in the case
of weak Dirichlet-Dirichlet artificial boundary conditions (Ci = C j = Id, j ∈ VΩi )
is given by: find uk

i ∈ H1(Ωi) such that a(uk
i ,v) = l(v) ∀v ∈ H1(Ωi) where

a(uk
i ,v) :=

∫
Ωi

∇uk
i ·∇v+

∫
∂Ωi

−
∂uk

i
∂n

v− ∂v
∂n

uk
i +

γ

h
uk

i v (3)

l(v) :=
∫

Ωi

f v+
∫

∂Ωi\Γi j

(
− ∂v

∂n
+

γ

h
v
)

g+ ∑
j∈VΩi

∫
Γi j

(
− ∂v

∂n
+

γ

h
v
)

uk−1
j (4)

where γ is a penalization parameter and h the maximum mesh size.
Other variants of artificial boundary conditions such as Dirichlet-Neumann(Ci =

Id, C j = ∂/∂n, j ∈ VΩi), Neumann-Neumann (Ci = C j = ∂/∂n, j ∈ VΩi) and
Robin-Robin(Ci = C j = (∂/∂n)+ Id, j ∈ VΩi) are also treated. In the above vari-
ational formulation, only the terms colored in red in (4) requires communications
between neighboring subdomains for each Schwarz iteration and interpolation be-
tween the grids. Note that the assembly of the other terms of the variational for-
mulation is done once and is purely local. We make use of Boost.MPI and
Boost.Serialization to ease the transfer of FEEL++ complex data structures
such as meshes and (elements of) function spaces.

Listing 1 Feel++ snippet code for parallel Schwarz algorithm

// Create local mesh and function space on subdomain number i
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auto mesh = createGMSHMesh(_mesh=mesh_type, ...);
auto Xh = space_type::New(mesh);
std::vector<mpi::request> reqs; // vector of Boost.MPI requests
for(int j=0, j< Nneighbors, ++j){

// Extract trace mesh on interface number j
trace_mesh_send[j]=mesh->trace(markedfaces(mesh,j));
// Exchange trace mesh with neighbor subdomain number j
auto req1=comm.isend( j,i,trace_mesh_send[j] );
auto req2=comm.irecv( j,j,trace_mesh_recv[j] );
reqs.push_back(req1); reqs.push_back(req2);

} mpi::wait_all(reqs.begin(), reqs.end());// wait all requests
for(int j=0, j< Nneighbors, ++j){

// Create trace function space for interface number j
TXh[j] = trace_space_type::New(trace_mesh_recv[j]);
// Create interpolation operator from Xh to TXh[j]
opI[j]=operatorInterpolation(Xh,TXh[j]); }

while(!convergence) { // Schwarz iterations
reqs.clear();
for(int j=0, j< Nneighbors, ++j){

// Non conforming interpolation for interface number j
opI[j]->apply(solution,trace_solution_send[j]);
// Exchange trace solution with neighbor subdomain number j
auto req1=comm.isend( j,i,trace_solution_send[j] );
auto req2=comm.irecv( j,j,trace_solution_recv[j] );
reqs.push_back(req1); reqs.push_back(req2);

} mpi::wait_all(reqs.begin(), reqs.end());// wait all requests
// Update right hand side for each schwarz iteration

for(int j=0, j< Nneighbors, ++j){
form1( _test=Xh,_vector=F ) +=

integrate(elements(trace_mesh_send[j]),
-grad(v)*N()*idv(trace_solution_recv[j])
+penaldir*idv(trace_solution_recv[j])*id(v)/hFace()); }

solve(); }

To illustrate our implementation of the Schwarz method, we consider the problem
(1) over a partition over the domain Ω = [0,1]2 into 128 overlapping subdomains
(16× 8) with non matching meshes. The boundary condition and the source write
g(x,y) = 0 and f (x,y) = exp(−10xy)cos( 3π

8 )sin(xy).

Fig. 1 Numerical solutions obtained by Schwarz parallel additive algorithm in 2D on 128 proces-
sors(1 subdomain/processor): First schwarz iteration(Left) and solution at convergence(Right)
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The numerical solutions in Figure 1 are obtained using P2 Lagrange elements.
The precision of the numerical solver is fixed to 1e− 7. The mesh size is 0.01 in
each subdomain and the size of the overlap is 0.02 but we don’t ensure that the grids
are conforming. The total number of degree of freedom is 153600. The number
of Schwarz iterations to convergence is 130 and the relative L2 error ‖u− uh‖ =
1.164901e− 06. The listing 1 illustrates some aspects of the Schwarz algorithm
using the Feel++ language.

2.2 Seamless Communication Approach

Here we consider the domain decomposition methods with seamless communica-
tions in FEEL++. We provide a parallel data framework: we start with automatic
mesh partitioning using GMSH(Chaco/Metis) — adding information about ghosts
cells with communication between neighbor partitition; — then FEEL++ data struc-
tures are parallel such as meshes, (elements of) function spaces — create a parallel
degrees of freedom table with local and global views; — and finally we use the
PETSC Krylov subspace solvers(KSP) coupled with PETSC preconditioners such
as Block-Jacobi, ASM, GASM. The last preconditioner is an additive variant of the
Schwarz alternating method for the case of many subregion, see [19]. For each sub-
preconditioners(in the subdomains), PETSC allows to choose in the wide range of
sequential preconditioners such, ilu, jacobi, ml.

To illustrate this, we perform a strong scalability test with a Laplace problem in
3D using P3 Lagrange elements (about 8 Millions degrees of freedom). The listing 2
corresponds to the code that allowed us to realize this test. The speedup displayed in
table 1 corresponds to the assembly plus the solve times. We can see that the scaling
is good except for the last configuration where the local problems is too small.

Listing 2 Laplacian Solver using continuous approximation spaces and PETSc in parallel

/* Create parallel function space and some associated elements */
auto Xh = space_type::New( _mesh=mesh );
/* Create the parallel matrix and vector of linear system */
auto A = backend()->newMatrix(_test=Xh, _trial=Xh);
auto F = backend()->newVector(Xh);
/* Parallel assembly of the right hand side */
form1( _test=Xh, _vector=F )=

integrate( _range=elements( mesh ), _expr=f*id( v ) )
/* Parallel assembly of the global matrix */
form2( _test=Xh, _trial=Xh, _matrix=A ) =

integrate( _range=elements( mesh ),
_expr=gradt(u)*trans(grad(v)) );

/* Apply Dirichlet boundary conditions strongly */
form2( _test=Xh, _trial=Xh, _matrix=A ) +=

on( _range=boundaryfaces(mesh),
_element=u,_rhs=F, _expr=g );

/* solve system using PETSc parallel solvers/preconditioners */
backend()->solve( _matrix=A, _solution=u, _rhs=F );
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Table 1 Strong scalability test

Number of Cores Absolute Times Speedup

1024 41.2 1
2048 18.2 2.26
4096 10 4.12
8192 7 5.88

3 Mortar Method

10−2 10−1

10−14

10−11

10−8

10−5

10−2

h

‖u
−

u h
‖ L

2

P1 slope = 2.05
P2 slope = 3.07
P3 slope = 4.27
P4 slope = 5.43
P5 slope = 6.07

Fig. 2 Convergence results for Mortar Ele-
ment Method in 2D with L2 Errors curves

Consider the problem (1) where L := −∆

and homogeneous Dirichlet boundary con-
ditions. We assume that Ω is partitioned
into two nonoverlapping subdomains and it
is a d-dimensional domain (d = 2,3), with
a Lipschitz boundary ∂Ω . We also assume
that f belongs to L2(Ω). The main idea of
this method is to enforce the weak conti-
nuity between the solutions on each sub-
domain. This is achieved by introducing a
Lagrange multiplier corresponding to this
connection constraint [3]. Let us denote by
Vih the finite element approximation space
on Ωi, of basis (ψi, j) j=1,···Ni , i = 1,2, and
by Wh that of Γ := ∂Ω1 ∩ ∂Ω2, of basis
(φk)k=1,···K and Λ :=

{
η ∈ H1/2(Γ ) | η = v|Γ for a suitable v ∈ H1(Ω)

}
the trace

space. The mortar formulation is given by: for i= 1,2 find ui ∈Vi :=H1(Ωi), λ ∈Λ

such that 
∫

Ωi

∇ui ·∇vi±
∫

Γ

λvi =
∫

Ωi

f vi ∀ vi ∈ H1(Ωi)∫
Γ

λ (u1−u2) = 0 ∀ λ ∈Λ

(5)

Listing 3 Jump terms in the global matrix for mortar formulation

// product function spaces Xh1 ×Xh2 ×Λh for Ω1×Ω2×Γ

typedef meshes<mesh1_type,mesh2_type,trace_mesh_type> mesh_type;
typedef bases<Lagrange<2>,

Lagrange<3>,
Lagrange<2,Mortar> > basis_type;

typedef FunctionSpace< mesh_type, basis_type > space_type;
auto mesh = meshes( mesh1, mesh2, trace_mesh );
auto Xh = space_type::New( _mesh=mesh );
auto u = Xh->element();
auto u1 = u.element<0>();
auto u2 = u.element<1>();
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auto mu = u.element<2>();
// assembly of jump terms in the global matrix A
auto A = M_backend->newMatrix( _trial=Xh, _test=Xh );
form2( _trial=Xh, _test=Xh, _matrix=A ) +=

integrate(elements(Xh->mesh<3>()),

The convergence results in figure 2 are obtained with the solution of the problem
(1) using mortar formulation (5) by splitting the initial domain Ω = [0,1]× [0,1] into
two nonoverlapping subdomains Ω1 = [0,0.45]× [0,1] and Ω2 = [0.45,1]× [0,1]
with g(x,y)= sin(πx)cos(πy) is the exact solution and f (x,y)= 2π2g the right hand
side. The convergence tests are performed by taking different mesh sizes hΩ1 = h ∈
{0.2,0.1,0.05,0.025,0.0125}, hΩ2 = hΩ1 +10−3 and different Lagrange polygonal
orders Pk, k ∈ {1,2,3,4,5}. We plot the linear regression lines of ‖u− uh‖L2 ver-
sus h, and we retrieve the optimal convergence properties provided by the mortar
method. Note that the above 2D/3D mortar code in Listing 3 is purely sequential,
the parallel version of 2D/3D mortar code for arbitrary number of subdomains is
presented in [18].

4 Conclusion

We presented our ongoing work on building a flexible domain decomposition frame-
work in FEEL++. A lot of work remains to be done, however we have already the
toolbox to reproduce a large range of domain decomposition methods in sequential
and to a lesser extent in parallel. Regarding the Schwarz methods, we are currently
working on having them as preconditioners of Krylov subspace methods and build-
ing coarse grid preconditioners on massively parallel architectures, see [9]. As to
the mortar methods, we have already a 2D/3D parallel code with some simple pre-
conditioner strategy [18] and we develop scalable preconditioners for the constraint
space formulation, see [4].
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