# 3-D FETI-DP preconditioners for composite finite element-discontinuous Galerkin methods 

Maksymilian Dryja ${ }^{1}$ and Marcus Sarkis ${ }^{2}$

Key words: FETI-DP, Discontinuous Galerkin, Nonmatching Grids, Discontinuous Coefficients, Domain Decomposition, Schwarz Methods

## 1 Introduction

In this paper a Nitsche-type discretization based on discontinuous Galerkin (DG) method for an elliptic three-dimensional problem with discontinuous coefficients is considered. The problem is posed on a polyhedral region $\Omega$ which is a union of $N$ disjoint polyhedral subdomains $\Omega_{i}$ of diameter $O\left(H_{i}\right)$ and we assume that this partition is geometrically conforming. Inside each subdomain, a conforming finite element space on a quasiuniform triangulation with mesh size $O\left(h_{i}\right)$ is introduced. Large discontinuities on the coefficients and nonmatching meshes are allowed to occur only across $\partial \Omega_{i}$. In order to deal with the nonconformity of the FE spaces across subdomain interfaces, a discrete problem is formulated using the symmetric interior penalty DG method only on the subdomain interfaces. For solving the resulting discrete system, FETI-DP type of methods are designed and fully analyzed. This paper extends the 2-D results in [2] to 3-D problems.

## 2 Differential and discrete problems

Consider the following problem: Find $u_{e x}^{*} \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
a\left(u_{e x}^{*}, v\right)=f(v) \text { for all } v \in H_{0}^{1}(\Omega) \tag{1}
\end{equation*}
$$

where

$$
a(u, v):=\sum_{i=1}^{N} \int_{\Omega_{i}} \rho_{i}(x) \nabla u \cdot \nabla v d x \quad \text { and } \quad f(v):=\int_{\Omega} f v d x .
$$

To simplify the presentation, we assume that $\rho_{i}(x)$ is equal to positive constant $\rho_{i}$.

[^0]We now consider the discrete problem associated to (1). Let $X_{i}\left(\Omega_{i}\right)$ be the regular finite element (FE) space of piecewise linear and continuous functions in $\Omega_{i}$ and define

$$
X(\Omega)=\prod_{i=1}^{N} X_{i}\left(\Omega_{i}\right) \equiv X_{1}\left(\Omega_{1}\right) \times X_{2}\left(\Omega_{2}\right) \times \cdots \times X_{N}\left(\Omega_{N}\right)
$$

We note that we do not assume that the functions in $X_{i}\left(\Omega_{i}\right)$ vanish on $\partial \Omega_{i} \cap \partial \Omega$.
Let us denote $\bar{F}_{i j}:=\partial \Omega_{i} \cap \partial \Omega_{j}$ as a face of $\partial \Omega_{i}$ and $\bar{F}_{j i}:=\partial \Omega_{j} \cap \partial \Omega_{i}$ as a face of $\partial \Omega_{j}$. In spite of the common face $F_{i j}$ and $F_{j i}$ being geometrically the same, they will be treated separately since we consider different triangulations on $\bar{F}_{i j} \subset \partial \Omega_{i}$ with a mesh parameter $h_{i}$ and on $\bar{F}_{j i} \subset \partial \Omega_{j}$ with a mesh parameter $h_{j}$. We denote the interior $h_{i}$-nodes of $F_{i j}$ and the $h_{j}$-nodes of $F_{j i}$ by $F_{i j h}$ and $F_{j i h}$, respectively.

Let us denote by $\mathscr{F}_{i}^{0}$ the set of indices $j$ of $\Omega_{j}$ which has a common face $F_{j i}$ with $\Omega_{i}$. To take into account also of these faces of $\Omega_{i}$ which belong to $\partial \Omega$, we introduce a set of indices $\mathscr{F}_{i}^{\partial}$ to refer theses faces. The set of indices of all faces of $\Omega_{i}$ is denoted by $\mathscr{F}_{i}:=\mathscr{F}_{i}^{0} \cup \mathscr{F}_{i}^{\partial}$. A discrete problem is obtained by a composite FE/DG method, see [1], is of the form: Find $u^{*}=\left\{u_{i}^{*}\right\}_{i=1}^{N} \in X(\Omega)$ where $u_{i} \in X_{i}\left(\Omega_{i}\right)$, such that

$$
\begin{equation*}
a_{h}\left(u^{*}, v\right)=f(v) \quad \text { for all } v=\left\{v_{i}\right\}_{i=1}^{N} \in X(\Omega) \tag{2}
\end{equation*}
$$

where

$$
\begin{gather*}
a_{h}(u, v):=\sum_{i=1}^{N} a_{i}^{\prime}(u, v), \quad f(v):=\sum_{i=1}^{N} \int_{\Omega_{i}} f v_{i} d x, \\
a_{i}^{\prime}(u, v):=\left\{a_{i}(u, v)+p_{i}(u, v)\right\}+s_{i}(u, v) \equiv\left\{d_{i}(u, v)\right\}+s_{i}(u, v), \tag{3}
\end{gather*}
$$

where

$$
\begin{gathered}
a_{i}(u, v):=\int_{\Omega_{i}} \rho_{i} \nabla u_{i} \cdot \nabla v_{i} d x \\
p_{i}(u, v):=\sum_{j \in \mathscr{F}_{i}} \int_{F_{i j}} \frac{\delta}{l_{i j}} \frac{\rho_{i}}{h_{i j}}\left(u_{j}-u_{i}\right)\left(v_{j}-v_{i}\right) d s
\end{gathered}
$$

and

$$
s_{i}(u, v):=\sum_{j \in \mathscr{F}_{i}} \int_{F_{i j}} \frac{1}{l_{i j}}\left(\rho_{i} \frac{\partial u_{i}}{\partial n}\left(v_{j}-v_{i}\right)+\rho_{i} \frac{\partial v_{i}}{\partial n}\left(u_{j}-u_{i}\right)\right) d s
$$

Here, when $j \in \mathscr{F}_{i}^{0}$, we set $l_{i j}=2$ and let $h_{i j}:=2 h_{i} h_{j} /\left(h_{i}+h_{j}\right)$, i.e., the harmonic average of $h_{i}$ and $h_{j}$. When $j \in \mathscr{F}_{i}^{\partial}$, we denote the boundary faces $F_{i j} \subset \partial \Omega_{i}$ by $F_{i \partial}$ and set $l_{i \partial}=1$ and $h_{i \partial}=h_{i}$, and on the artificial face $F_{j i} \equiv F_{\partial i}$, we set $u_{\partial}=0$ and $v_{\partial}=0$. The partial derivative $\frac{\partial}{\partial n}$ denotes the outward normal derivative on $\partial \Omega_{i}$ and $\delta$ is the sufficiently large penalty parameter. For details on accuracy and well-posedness, see $[2,1]$ and references there in. In particular, we show that exists positive constants $\gamma_{0}$ and $\gamma_{1}$, which do not depend on the $\rho_{i}, h_{i}$ and $H_{i}$, such that

$$
\gamma_{0} a_{h}(u, u) \leq \sum_{i=1}^{N} d_{i}(u, u) \leq \gamma_{1} a_{h}(u, u) \text { for all } u \in X(\Omega)
$$

## 3 Schur complement systems and discrete harmonic extensions

This section is similar to Section 3 in [2] with a few natural changes when passing from the 2-D to the 3-D case, and we refer to that for more details.

- Define the sets $\Omega_{i}^{\prime}, \Gamma_{i}, \Gamma_{i}^{\prime}, I_{i}, \Gamma, \Gamma^{\prime}, I$ and $\Omega^{\prime}$ by

$$
\begin{gathered}
\Omega_{i}^{\prime}=\bar{\Omega}_{i} \bigcup\left\{\cup_{j \in \mathscr{F}_{i}^{0}} \bar{F}_{j i}\right\}, \quad \Gamma_{i}=\overline{\partial \Omega_{i} \backslash \partial \Omega}, \quad \Gamma_{i}^{\prime}=\Gamma_{i} \bigcup\left\{\cup_{j \in \mathscr{F}_{i}^{0}} \bar{F}_{j i}\right\}, \\
\Gamma=\bigcup_{i=1}^{N} \Gamma_{i}, \quad \Gamma^{\prime}=\prod_{i=1}^{N} \Gamma_{i}^{\prime}, \quad I_{i}=\Omega_{i}^{\prime} \backslash \Gamma_{i}^{\prime}, \quad I=\prod_{i=1}^{N} I_{i} \quad \text { and } \quad \Omega^{\prime}=\prod_{i=1}^{N} \Omega_{i}^{\prime} .
\end{gathered}
$$

- Define the space $W_{i}\left(\Omega_{i}^{\prime}\right)$ by

$$
W_{i}\left(\Omega_{i}^{\prime}\right)=X_{i}\left(\Omega_{i}\right) \times \prod_{j \in \mathscr{F}_{i}^{0}} X_{i}\left(\bar{F}_{j i}\right), \text { where } X_{i}\left(\bar{F}_{j i}\right)=X_{j}\left(\Omega_{j}\right)_{\mid \bar{F}_{j i}}
$$

A function $u_{i} \in W_{i}\left(\Omega_{i}^{\prime}\right)$ will be represented as

$$
u_{i}=\left\{\left(u_{i}\right)_{i},\left\{\left(u_{i}\right)_{j}\right\}_{j \in \mathscr{F}_{i}^{0}}\right\},
$$

where $\left(u_{i}\right)_{i}:=u_{i \mid \bar{\Omega}_{i}}\left(u_{i}\right.$ restricted to $\left.\bar{\Omega}_{i}\right)$ and $\left(u_{i}\right)_{j}:=u_{i \mid \bar{F}_{j i}}\left(u_{i}\right.$ restricted to $\left.\bar{F}_{j i}\right)$.

- For the definition of the discrete harmonic extension operators $\mathscr{H}_{i}^{\prime}$ and $\mathscr{H}_{i}$ (elimination of $I_{i}$ variables) with respect to the bilinear forms $a_{i}^{\prime}$ and $a_{i}$, see [2].
- The matrices $A_{i}^{\prime}$ and $S_{i}^{\prime}$ are defined by

$$
a_{i}^{\prime}\left(u_{i}, v_{i}\right)=\left\langle A_{i}^{\prime} u_{i}, v_{i}\right\rangle u_{i}, v_{i} \in W_{i}\left(\Omega_{i}^{\prime}\right), \quad a_{i}^{\prime}\left(u_{i}, v_{i}\right)=\left\langle S_{i}^{\prime} u_{i}, v_{i}\right\rangle u_{i}, v_{i} \in W_{i}\left(\Gamma_{i}^{\prime}\right) .
$$

- $W_{i}\left(\Gamma_{i}^{\prime}\right) \subset W_{i}\left(\Omega_{i}^{\prime}\right)$ denotes the $\mathscr{H}_{i}^{\prime}$-discrete harmonic functions.
- Define $W\left(\Omega^{\prime}\right)=\prod_{i=1}^{N} W_{i}\left(\Omega_{i}^{\prime}\right)$ and $W\left(\Gamma^{\prime}\right)=\prod_{i=1}^{N} W_{i}\left(\Gamma_{i}^{\prime}\right)$.
- Let the subspace $\hat{W}\left(\Omega^{\prime}\right) \subset W\left(\Omega^{\prime}\right)$ consist of functions $u=\left\{u_{i}\right\}_{i=1}^{N} \in W\left(\Omega^{\prime}\right)$ which are continuous on $\Gamma$, that is, for all $1 \leq i \leq N$ satisfy

$$
\left(u_{i}\right)_{i}(x)=\left(u_{j}\right)_{i}(x) \quad \text { for all } x \in \bar{F}_{i j} \text { for all } j \in \mathscr{F}_{i}^{0}
$$

and

$$
\left(u_{i}\right)_{j}(x)=\left(u_{j}\right)_{j}(x) \quad \text { for all } x \in \bar{F}_{j i} \text { for all } j \in \mathscr{F}_{i}^{0}
$$

We note that $\hat{W}\left(\Omega^{\prime}\right)$ can be identified to $X(\Omega)$.

- $\hat{W}\left(\Gamma^{\prime}\right)$ denotes the subspace of $\hat{W}\left(\Omega^{\prime}\right)$ of $\mathscr{H}_{i}^{\prime}$-discrete harmonic functions.
- The rest of Section 3 in [2] remains the same for 3-D problems. In particular, by eliminating the interior variables $I$ from the system (2), we obtain

$$
\begin{equation*}
\hat{S} u_{\Gamma}^{*}=g_{\Gamma} . \tag{4}
\end{equation*}
$$

We note that $\hat{S}$ can be assembled from $S_{i}^{\prime}$, i.e., $\hat{S}=\sum_{i=1}^{N} R_{\Gamma_{i}^{\prime}}^{T} S_{i}^{\prime} R_{\Gamma_{i}^{\prime}}$, where $R_{\Gamma_{i}^{\prime}}$ is the restriction operator from $\Gamma$ to $\Gamma_{i}^{\prime}$.

## 4 FETI-DP with corners, average edges and faces constraints

We now design a FETI-DP method for solving (4). We follow to the abstract approach described in pages 160-167 in [3].

Let us define the set of indices $\mathscr{E}_{i}^{0}$ of pairs $(j, k)$ of $\Omega_{j}$ and $\Omega_{k}, j \neq k$, for which $\bar{E}_{i j k}:=\partial F_{i j} \cap \partial F_{i k}$, for $j, k \in \mathscr{F}_{i}^{0}$, is an edge of $\partial \Omega_{i}$. In spite of the common edges $E_{i j k}, E_{j i k}$, and $E_{k i j}$ being geometrically the same, we treat them separately since we consider different triangulations on $E_{i j k} \subset \partial \Omega_{i}$ with a mesh parameter $h_{i}, E_{j i k} \subset$ $\partial \Omega_{j}$ with a mesh parameter $h_{j}$ and $E_{k i j} \subset \partial \Omega_{k}$ with a mesh parameter $h_{k}$. We denote the interior edge nodes of these triangulations by $E_{i j k h}, E_{j i k h}$ and $E_{k i j h}$, respectively.

Let us introduce the nodal points associated to the corner unknowns by

$$
\mathscr{V}_{i}:=\left\{\cup_{(j, k) \in \mathscr{E}_{i}^{0}} \partial E_{i j k}\right\} \text { and } \mathscr{V}_{i}^{\prime}:=\left\{\mathscr{V}_{i} \bigcup\left\{\cup_{(j, k) \in \mathscr{E}_{i}^{0}} \partial E_{j i k} \cup \partial E_{k i j}\right\}\right\}
$$

We say that $u=\left\{u_{i}\right\}_{i=1}^{N} \in W\left(\Omega^{\prime}\right)$ is continuous at the corners $\mathscr{V}_{i}$ if

$$
\left(u_{i}\right)_{i}(x)=\left(u_{j}\right)_{i}(x)=\left(u_{k}\right)_{i}(x) \quad \text { at all } x \in \mathscr{V}_{i} .
$$

Definition 1. (Subspaces $\tilde{W}\left(\Omega^{\prime}\right)$ and $\tilde{W}\left(\Gamma^{\prime}\right)$ ). The $\tilde{W}\left(\Omega^{\prime}\right)$ consists of functions $u=$ $\left\{u_{i}\right\}_{i=1}^{N} \in W\left(\Omega^{\prime}\right)$ for which, for all $1 \leq i \leq N$, the following conditions are satisfied:

- At all corners $\mathscr{V}_{i}, u$ is continuous.
- On all edges $E_{i j k}$ for $(j, k) \in \mathscr{E}_{i}^{0}$

$$
\left(\bar{u}_{i}\right)_{i, E_{i j k}}=\left(\bar{u}_{j}\right)_{i, E_{i j k}}=\left(\bar{u}_{k}\right)_{i, E_{i j k}} .
$$

- On all faces $F_{i j}$ for $j \in \mathscr{F}_{i}^{0}$

$$
\left(\bar{u}_{i}\right)_{i, F_{i j}}=\left(\bar{u}_{j}\right)_{i, F_{i j}},
$$

where

$$
\left(\bar{u}_{i}\right)_{i, E_{i j k}}=\frac{1}{\left|E_{i j k}\right|} \int_{E_{i j k}}\left(u_{i}\right)_{i} d s, \quad\left(\bar{u}_{j}\right)_{i, F_{i j}}=\frac{1}{\left|F_{i j}\right|} \int_{F_{i j}}\left(u_{j}\right)_{i} d s
$$

The $\tilde{W}\left(\Gamma^{\prime}\right)$ denotes the subspace of $\tilde{W}\left(\Omega^{\prime}\right)$ of functions which are discrete harmonic in the sense of $\mathscr{H}_{i}^{\prime}$. It is easy to see that $\hat{W}\left(\Gamma^{\prime}\right) \subset \tilde{W}\left(\Gamma^{\prime}\right) \subset W\left(\Gamma^{\prime}\right)$.

Let $\tilde{A}$ be the stiffness matrix which is obtained by assembling the matrices $A_{i}^{\prime}$ for $1 \leq i \leq N$, from $W\left(\Omega^{\prime}\right)$ to $\tilde{W}\left(\Omega^{\prime}\right)$. We represent $u \in \tilde{W}\left(\Omega^{\prime}\right)$ as $u=\left(u_{I}, u_{\Pi}, u_{\triangle}\right)$ where the subscript $I$ refers to the interior degrees of freedom at the nodal points on $I$, the $\Pi$ refers to the degrees of freedom at the corners $\left\{\mathscr{V}_{i}\right\}_{i=1}^{N}$ and edges and faces averages, and the $\Delta$ refers to the remaining degrees of freedom, i.e., the nodal values on $\left\{\Gamma_{i}^{\prime} \backslash \mathscr{V}_{i}^{\prime}\right\}_{i=1}^{N}$ with edges and faces average equal to zero. For details on $\tilde{A}$, see (4.5) in [2], and its Schur complement $\tilde{S}$ (after eliminating the $I$ and $\Pi$ degrees of freedom from $\tilde{A}$ ), see (4.6) in [2].

A vector $u \in \tilde{W}\left(\Gamma^{\prime}\right)$ can uniquely be represented by $u=\left(u_{\Pi}, u_{\triangle}\right)$, therefore, we can represent

$$
\tilde{W}\left(\Gamma^{\prime}\right)=\hat{W}_{\Pi}\left(\Gamma^{\prime}\right) \times W_{\triangle}\left(\Gamma^{\prime}\right)
$$

where $\hat{W}_{\Pi}\left(\Gamma^{\prime}\right)$ refers to the $\Pi$-degrees of freedom of $\tilde{W}\left(\Gamma^{\prime}\right)$ while $W_{\triangle}\left(\Gamma^{\prime}\right)$ to the $\triangle$-degrees of freedom of $\tilde{W}\left(\Gamma^{\prime}\right)$. The vector space $W_{\triangle}\left(\Gamma^{\prime}\right)$ can be decomposed as

$$
W_{\triangle}\left(\Gamma^{\prime}\right)=\prod_{i=1}^{N} W_{i, \Delta}\left(\Gamma_{i}^{\prime}\right),
$$

where the local space $W_{i, \triangle}\left(\Gamma_{i}^{\prime}\right)$ refers to the degrees of freedom associated to the nodes of $\Gamma_{i}^{\prime} \backslash \mathscr{V}_{i}^{\prime}$ for $1 \leq i \leq N$ with zero averages on $F_{i j}$ and $F_{j i}$, for $i \in \mathscr{F}_{i}^{0}$, and on $E_{i j k}, E_{j i k}$ and $E_{k i j}$, for $(j, k) \in \mathscr{E}_{i}^{0}$.

The jump operator $B_{\triangle}: W_{\triangle}\left(\Gamma^{\prime}\right) \rightarrow U_{r}$

$$
B_{\triangle}=\left(B_{\triangle}^{(1)}, B_{\triangle}^{(2)}, \cdots, B_{\triangle}^{(N)}\right)
$$

is defined as follows. Each $B_{\triangle}^{(i)}$ maps $W_{\triangle}\left(\Gamma^{\prime}\right)$ to $U_{i, r}$ (jumps on edges and faces), where $v_{i}=B^{(i)} u_{\triangle}$ is defined by:

- For each face $F_{i j}$ for $j \in \mathscr{F}_{i}^{0}$, let

$$
v_{i}(x)=\left(u_{i, \Delta}\right)_{i}(x)-\left(u_{j, \Delta}\right)_{i}(x) \quad \text { for all } x \in F_{i j h}
$$

- For each edge $E_{i j k}$ for $(j, k) \in \mathscr{E}_{i}^{0}$, let $v_{i}=\left\{v_{i, 1}, v_{i, 2}\right\}$, where

$$
\begin{array}{ll}
v_{i, 1}(x)=\left(u_{i, \Delta}\right)_{i}(x)-\left(u_{j, \Delta}\right)_{i}(x) & \text { for all } x \in E_{i j k h}, \\
v_{i, 2}(x)=\left(u_{i, \Delta}\right)_{i}(x)-\left(u_{k, \Delta}\right)_{i}(x) & \text { for all } x \in E_{i j k h} .
\end{array}
$$

Let $U_{r}=\left(U_{1, r}, \cdots, U_{N, r}\right)$ where $U_{i, r}$ is the range of $B_{\triangle}^{(i)}$, and note that the $U_{i, r}$ also has zero average on edges and faces. The space $U_{r}$ will also be denoted as the space of Lagrange multipliers. We note that by setting $B_{\triangle}^{(i)} u_{\triangle}=0$, we have one constraint for each node on $F_{i j h}$ and two constraints for each node on $E_{i j k h}$. The saddle point problem is defined as in [2], except that here we replace $\hat{W}_{\triangle}$ by $U_{r}$, and the problem (4) is reduced to: Find $u_{\triangle}^{*} \in W_{\triangle}\left(\Gamma^{\prime}\right)$ and $\lambda^{*} \in U_{r}$ such that

$$
\left\{\begin{aligned}
\tilde{S} u_{\triangle}^{*}+B_{\triangle}^{T} \lambda^{*} & =\tilde{g}_{\triangle} \\
B_{\triangle} u_{\triangle}^{*} & =0
\end{aligned}\right.
$$

Hence, it reduces to

$$
\begin{equation*}
F \lambda^{*}=g \tag{5}
\end{equation*}
$$

where

$$
F:=B_{\triangle} \tilde{S}^{-1} B_{\triangle}^{T}, \quad g:=B_{\triangle} \tilde{S}^{-1} \tilde{g}_{\triangle}
$$

### 4.1 Dirichlet Preconditioner

We now define the FETI-DP preconditioner for $F$, see (5). Let $S_{i, \triangle}^{\prime}$ be the Schur complement of $S_{i}^{\prime}$ restricted to $W_{i, \triangle}\left(\Gamma_{i}^{\prime}\right) \subset W_{i}\left(\Gamma_{i}^{\prime}\right)$, and define $S_{\triangle}^{\prime}=\operatorname{diag}\left\{S_{i, \Delta}^{\prime}\right\}_{i=1}^{N}$.

Let us introduce diagonal scaling matrices $D_{i}: U_{i, r} \rightarrow U_{i, r}$, for $1 \leq i \leq N$ as follows. For $\beta \in[1 / 2, \infty)$, define the diagonal entry of $D_{i}$ by:

- For each face $F_{i j}$ for $j \in \mathscr{F}_{i}^{0}$, let

$$
D_{i}(x)=\rho_{j}^{\beta}\left(\rho_{i}^{\beta}+\rho_{j}^{\beta}\right)^{-1}=: \gamma_{j i} \quad \text { for all } x \in F_{i j h}
$$

- For each edge $E_{i j k}$ for $(j, k) \in \mathscr{E}_{i}^{0}$, let $D_{i}=\left\{D_{i, 1}, D_{i, 2}\right\}$, where

$$
\begin{aligned}
& D_{i, 1}(x)=\rho_{j}^{\beta}\left(\rho_{i}^{\beta}+\rho_{j}^{\beta}+\rho_{k}^{\beta}\right)^{-1}=: \gamma_{j i k} \quad \text { for all } x \in E_{i j k h} \\
& D_{i, 2}(x)=\rho_{k}^{\beta}\left(\rho_{i}^{\beta}+\rho_{j}^{\beta}+\rho_{k}^{\beta}\right)^{-1}=: \gamma_{k i j} \quad \text { for all } x \in E_{i j k h}
\end{aligned}
$$

We now introduce $B_{D, \triangle}: U_{r} \rightarrow U_{r}$ by $B_{D, \triangle}=\left(D_{1} B_{\triangle}^{(1)}, \cdots, D_{N} B_{\triangle}^{(N)}\right)$ and the operator $P_{\triangle}: W_{\triangle}\left(\Gamma^{\prime}\right) \rightarrow W_{\triangle}\left(\Gamma^{\prime}\right)$ by $P_{\triangle}:=B_{D, \triangle}^{T} B_{\triangle}$. We can check that for $u_{\triangle}=$ $\left\{u_{i, \triangle}\right\}_{i=1}^{N} \in W_{\triangle}\left(\Gamma^{\prime}\right)$, that $v_{\triangle}:=P_{\triangle} u_{\triangle}$ satisfies:

$$
\begin{gather*}
\left(v_{i, \triangle}\right)_{i}=\gamma_{j i}\left[\left(u_{i, \triangle}\right)_{i}-\left(u_{j, \Delta}\right)_{i}\right] \quad \text { on } F_{i j h},  \tag{6}\\
\left(v_{j, \triangle}\right)_{i}=\gamma_{i j}\left[\left(u_{j, \Delta}\right)_{i}-\left(u_{i, \Delta}\right)_{i}\right] \quad \text { on } F_{i j h},  \tag{7}\\
\left(v_{i, \triangle}\right)_{i}=\gamma_{j i k}\left[\left(u_{i, \triangle}\right)_{i}-\left(u_{j, \Delta}\right)_{i}\right]+\gamma_{k i j}\left[\left(u_{i, \Delta}\right)_{i}-\left(u_{k, \triangle}\right)_{i}\right] \quad \text { on } E_{i j k h},  \tag{8}\\
\left(v_{j, \triangle}\right)_{i}=\gamma_{i j k}\left[\left(u_{j, \triangle}\right)_{i}-\left(u_{i, \Delta}\right)_{i}\right]+\gamma_{k i j}\left[\left(u_{j, \Delta}\right)_{i}-\left(u_{k, \triangle}\right)_{i}\right] \quad \text { on } E_{i j k h},  \tag{9}\\
\left(v_{k, \triangle}\right)_{i}=\gamma_{i j k}\left[\left(u_{k, \triangle}\right)_{i}-\left(u_{i, \Delta}\right)_{i}\right]+\gamma_{j i k}\left[\left(u_{k, \Delta}\right)_{i}-\left(u_{j, \triangle}\right)_{i}\right] \quad \text { on } E_{i j k h} . \tag{10}
\end{gather*}
$$

We note from [(6) - (7)] that on $F_{i j h}$ it holds

$$
\begin{equation*}
\left[\left(v_{i, \Delta}\right)_{i}-\left(v_{j, \Delta}\right)_{i}\right]=\left[\left(u_{i, \Delta}\right)_{i}-\left(u_{j, \Delta}\right)_{i}\right] \tag{11}
\end{equation*}
$$

and from $[(8)-(9)]+[(8)-(10)]$ that on $E_{i j k h}$ it holds

$$
\left[\left(v_{i, \Delta}\right)_{i}-\left(v_{j, \triangle}\right)_{i}\right]+\left[\left(v_{i, \Delta}\right)_{i}-\left(v_{k, \Delta}\right)_{i}\right]=\left[\left(u_{i, \Delta}\right)_{i}-\left(u_{j, \triangle}\right)_{i}\right]+\left[\left(u_{i, \Delta}\right)_{i}-\left(u_{k, \Delta}\right)_{i}\right]
$$

and it follows that $B_{\triangle} P_{\triangle}=B_{\triangle}$ and $P_{\triangle}^{2}=P_{\triangle}$.
In the FETI-DP method, the preconditioner $M^{-1}$ is defined as follows:

$$
M^{-1}=B_{D} S_{\triangle}^{\prime} B_{D}^{T}=\sum_{i=1}^{N} D_{i} B_{\triangle}^{(i)} S_{i, \triangle}^{\prime}\left(B_{\triangle}^{(i)}\right)^{T} D_{i}
$$

The main result of this paper is the following:
Theorem 1. For any $\lambda \in U_{r}$, it holds that

$$
\langle M \lambda, \lambda\rangle \leq\langle F \lambda, \lambda\rangle \leq C\left(1+\log \frac{H}{h}\right)^{2}\langle M \lambda, \lambda\rangle
$$

where $C$ is a positive constant independent of $h_{i}, H_{i}, \lambda$ and the jumps of $\rho_{i}$. Here and below, $\log \left(\frac{H}{h}\right):=\max _{i=1}^{N} \log \left(\frac{H_{i}}{h_{i}}\right)$.
Proof. Using the same algebraic arguments as in [2], it reduces to Lemma 1. The proof of Lemma 1 for the 3-D case is new and given with details below.

Lemma 1. For any $u_{\triangle} \in W_{\triangle}\left(\Gamma^{\prime}\right)$, it holds that

$$
\begin{equation*}
\left\|P_{\triangle} u_{\triangle}\right\|_{S_{\triangle}^{\prime}}^{2} \leq C\left(1+\log \frac{H}{h}\right)^{2}\left\|u_{\triangle}\right\|_{\tilde{S}}^{2} \tag{12}
\end{equation*}
$$

where $C$ is a positive constant independent of $h_{i}, H_{i}, u_{\triangle}$ and the jumps of $\rho_{i}$.
Proof. Given $u_{\triangle} \in W_{\triangle}\left(\Gamma^{\prime}\right)$, let $u=\left(u_{\Pi}, u_{\triangle}\right) \in \tilde{W}\left(\Gamma^{\prime}\right)$ be the solution of

$$
\begin{equation*}
\left\langle\tilde{S} u_{\triangle}, u_{\triangle}\right\rangle=\min \left\langle S^{\prime} w, w\right\rangle=:\left\langle S^{\prime} u, u\right\rangle \tag{13}
\end{equation*}
$$

where the minimum is taken over $w=\left(w_{\Pi}, w_{\triangle}\right) \in \tilde{W}\left(\Gamma^{\prime}\right)$ such that $w_{\Pi} \in \hat{W}_{\Pi}\left(\Gamma^{\prime}\right)$ and $w_{\triangle}=u_{\triangle}$. Hence, we can replace $\left\|u_{\triangle}\right\|_{\tilde{S}}$ in (12) by $\|u\|_{S^{\prime}}$.

Let us represent the $u$ defined above as $\left\{u_{i}\right\}_{i=1}^{N} \in W\left(\Gamma^{\prime}\right)$ where $u_{i} \in W_{i}\left(\Gamma_{i}^{\prime}\right)$. Let $v \in \tilde{W}\left(\Gamma^{\prime}\right)$ be equal to $P_{\triangle} u_{\triangle}$ at the $\triangle$-nodes and equal to zero at the $\Pi$-nodes, i.e., $v=0$ on $\mathscr{V}_{i}^{\prime}$ for $1 \leq i \leq N$ and zero average on faces and edges. Let us represent $v$ as $\left\{v_{i}\right\}_{i=1}^{N} \in W\left(\Gamma^{\prime}\right)$, where $v_{i} \in W_{i}\left(\Gamma_{i}^{\prime}\right)$. We have

$$
\left\|P_{\triangle} u_{\Delta}\right\|_{S_{\triangle}^{\prime}}^{2}=\|v\|_{S^{\prime}}^{2}=\sum_{i=1}^{N}\left\|v_{i}\right\|_{S_{i}^{\prime}}^{2}
$$

in view of the definition of $S_{i, \triangle}^{\prime}$ and $S_{\triangle}$, see (4.18), (3.5) and (4.6) in [2]. Hence, to prove the lemma it remains to show that

$$
\sum_{i=1}^{N}\left\|v_{i}\right\|_{S_{i}^{\prime}}^{2} \leq C\left(1+\log \frac{H}{h}\right)^{2}\|u\|_{S^{\prime}}^{2}
$$

since by (13) we obtain (12). By Corollary 3.2 in [2] we need to show

$$
\sum_{i=1}^{N} \tilde{d}_{i}\left(v_{i}, v_{i}\right) \leq C\left(1+\log \frac{H}{h}\right)^{2} \sum_{i=1}^{N} \tilde{d}_{i}\left(u_{i}, u_{i}\right)
$$

where, see (2.9) in [2], $\tilde{d_{i}}\left(v_{i}, v_{i}\right)=d_{i}\left(\mathscr{H}_{i} v_{i}, \mathscr{H}_{i} v_{i}\right)$ and

$$
\begin{equation*}
\tilde{d}_{i}\left(v_{i}, v_{i}\right)=\rho_{i}\left\|\nabla\left(\mathscr{H}_{i} v_{i}\right)_{i}\right\|_{L^{2}\left(\Omega_{i}\right)}^{2}+\sum_{j \in \mathscr{F}_{i}} \frac{\rho_{i} \delta}{l_{i j} h_{i j}}\left\|\left(v_{i}\right)_{i}-\left(v_{i}\right)_{j}\right\|_{L^{2}\left(F_{i j}\right)}^{2} \tag{14}
\end{equation*}
$$

Here, $\left(v_{i}\right)_{i}=\left(\mathscr{H}_{i} v_{i}\right)_{i}$ and $\left(u_{i}\right)_{i}=\left(\mathscr{H}_{i} u_{i}\right)_{i}$ inside of the subdomains $\Omega_{i}$.
To estimate the terms of the right-hand side (RHS) of (14) we represent $\left(v_{i}\right)_{i}$ as

$$
\begin{equation*}
\left(v_{i}\right)_{i}=\sum_{F_{i j} \subset\left(\partial \Omega_{i} \backslash \partial \Omega\right)} \theta_{F_{i j}}\left(v_{i}\right)_{i}+\sum_{E_{i j k} \subset \partial \Omega_{i}} \theta_{E_{i j k}}\left(v_{i}\right)_{i} \tag{15}
\end{equation*}
$$

and $\mathscr{H}_{i}$ is discrete harmonic on $\Omega_{i}$. Here, $\theta_{F_{i j}}\left(v_{i}\right)_{i}:=I^{h_{i}}\left(\vartheta_{F_{i j}}\left(v_{i}\right)_{i}\right)$ and $\theta_{E_{i j k}}\left(v_{i}\right)_{i}:=$ $I^{h_{i}}\left(\vartheta_{E_{i j k}}\left(v_{i}\right)_{i}\right)$, where $\vartheta_{F_{i j}}$ and $\vartheta_{E_{i j k}}$ are the standard face and edge cutoff functions and $I^{h_{i}}$ the finite element interpolator. We note that we do not have any vertex terms in (15) since $\left(v_{i}\right)_{i}=0$ on $\mathscr{V}_{i}$. From now on, we denote $\nabla\left(\mathscr{H}_{\ell} w_{\ell}\right)_{\ell}$ by $\nabla\left(w_{\ell}\right)_{\ell}$ for $\ell=i, j, k$ and $w=v, u$. Hence, using (15), we have

$$
\begin{equation*}
\left\|\nabla\left(v_{i}\right)_{i}\right\|_{L^{2}\left(\Omega_{i}\right)}^{2} \leq C\left\{\sum_{j \in \mathscr{F}_{i}^{0}}\left\|\theta_{F_{i j}}\left(v_{i}\right)_{i}\right\|_{H_{00}^{1 / 2}\left(F_{i j}\right)}^{2}+\sum_{(j, k) \in \mathscr{E}_{i}^{\circ 0}}\left\|\theta_{E_{i j k}}\left(v_{i}\right)_{i}\right\|_{L^{2}\left(E_{i j k}\right)}^{2}\right\} \tag{16}
\end{equation*}
$$

by well-known estimates, see [3]. Note that (16) is also valid for substructures $\Omega_{i}$ which intersect $\partial \Omega$ by using the same arguments as for the 2-D case; see [2]. Using (6), $\left(\bar{u}_{i}\right)_{i, F_{i j}}=\left(\bar{u}_{j}\right)_{i, F_{i j}}$ and Lemma 4.26 in [3], we obtain

$$
\begin{align*}
& \rho_{i}\left\|\theta_{F_{i j}}\left(v_{i}\right)_{i}\right\|_{H_{00}^{1 / 2}\left(F_{i j}\right)}^{2}=\rho_{i} \gamma_{j i}^{2}\left\|\theta_{F_{i j}}\left[\left(u_{i}\right)_{i}-\left(u_{j}\right)_{i}\right]\right\|_{H_{00}^{1 / 2}\left(F_{i j}\right)}^{2}  \tag{17}\\
& \leq C \rho_{i} \gamma_{j i}^{2}\left(1+\log \frac{H_{i}}{h_{i}}\right)^{2}\left|\left(u_{i}\right)_{i}-\left(u_{j}\right)_{i}\right|_{H^{1 / 2}\left(F_{i j}\right)}^{2} .
\end{align*}
$$

Let $Q_{i, F_{i j}}$ be the $L^{2}$-projection onto $X_{i}\left(F_{i j}\right)$, the restriction of $X_{i}\left(\Omega_{i}\right)$ on $\bar{F}_{i j}$. Using the triangle and inverse inequalities, and the $H^{1 / 2}$ - and $L^{2}$-stability of the $Q_{i, F_{i j}}$ projection, we have

$$
\begin{align*}
& \left|\left(u_{i}\right)_{i}-\left(u_{j}\right)_{i}\right|_{H^{1 / 2}\left(F_{i j}\right)}^{2}  \tag{18}\\
\leq & C\left\{\left|Q_{i, F_{i j}}\left[\left(u_{i}\right)_{i}-\left(u_{j}\right)_{j}\right]\right|_{H^{1 / 2}\left(F_{i j}\right)}^{2}+\left|Q_{i, F_{i j}}\left[\left(u_{j}\right)_{j}-\left(u_{j}\right)_{i}\right]\right|_{H^{1 / 2}\left(F_{i j}\right)}^{2}\right. \\
\leq & C\left\{\left|\left(u_{i}\right)_{i}\right|_{H^{1}\left(\Omega_{i}\right)}^{2}+\left|\left(u_{j}\right)_{j}\right|_{H^{1}\left(\Omega_{j}\right)}^{2}+\frac{1}{h_{i}}\left\|\left(u_{j}\right)_{j}-\left(u_{j}\right)_{i}\right\|_{L^{2}\left(F_{i j}\right)}^{2}\right\} .
\end{align*}
$$

Substituting (18) into (17) and using $\rho_{i} \gamma_{j i}^{2} \leq \min \left\{\rho_{i}, \rho_{j}\right\}$ if $\beta \in[1 / 2, \infty)$, we obtain

$$
\begin{gather*}
\rho_{i}\left\|\theta_{F_{i j}}\left(v_{i}\right)_{i}\right\|_{H_{00}^{1 / 2}\left(F_{i j}\right)}^{2} \leq  \tag{19}\\
\leq C\left(1+\log \frac{H_{i}}{h_{i}}\right)^{2} \quad\left\{\rho_{i}\left|\left(u_{i}\right)_{i}\right|_{H^{1}\left(\Omega_{i}\right)}^{2}+\rho_{j}\left|\left(u_{j}\right)_{j}\right|_{H^{1}\left(\Omega_{j}\right)}^{2}+\frac{\rho_{j}}{h_{i}}\left\|\left(u_{j}\right)_{j}-\left(u_{j}\right)_{i}\right\|_{L^{2}\left(F_{i j}\right)}^{2}\right\} \\
\leq C\left(1+\log \frac{H_{i}}{h_{i}}\right)^{2}\left\{\tilde{d}_{i}\left(u_{i}, u_{i}\right)+\tilde{d}_{j}\left(u_{j}, u_{j}\right)\right\}
\end{gather*}
$$

We now estimate the second term of (16). Using (8), we have

$$
\rho_{i}\left\|\theta_{E_{i j k}}\left(v_{i}\right)_{i}\right\|_{L^{2}\left(E_{i j k}\right)}^{2} \leq 2 \rho_{i}\left\{\gamma_{j i k}^{2}\left\|\left(u_{i}\right)_{i}-\left(u_{j}\right)_{i}\right\|_{L^{2}\left(E_{i j k}\right)}^{2}+\gamma_{k i j}^{2}\left\|\left(u_{i}\right)_{i}-\left(u_{k}\right)_{i}\right\|_{L^{2}\left(E_{i j k}\right)}^{2}\right\} .
$$

Using $\left(\bar{u}_{i}\right)_{i, E_{i j k}}=\left(\bar{u}_{j}\right)_{i, E_{i j k}}$ and Lemma 4.17 in [3], and the same arguments given in (18), and $\rho_{i} \gamma_{j i k}^{2} \leq \min \left\{\rho_{i}, \rho_{j}\right\}$ for $\beta \in[1 / 2, \infty)$, we obtain

$$
\begin{align*}
& \rho_{i} \gamma_{j i k}^{2}\left\|\left(u_{i}\right)_{i}-\left(u_{j}\right)_{i}\right\|_{L^{2}\left(E_{i j k}\right)}^{2} \leq C\left(1+\log \frac{H_{i}}{h_{i}}\right) \rho_{i} \gamma_{j i k}^{2}\left|\left(u_{i}\right)_{i}-\left(u_{j}\right)_{i}\right|_{H^{1 / 2}\left(F_{i j}\right)}^{2}  \tag{20}\\
\leq & C\left(1+\log \frac{H_{i}}{h_{i}}\right)\left\{\rho_{i}\left|\left(u_{i}\right)_{i}\right|_{H^{1}\left(\Omega_{i}\right)}^{2}+\rho_{j}\left|\left(u_{j}\right)_{j}\right|_{H^{1}\left(\Omega_{i}\right)}^{2}+\frac{\rho_{j}}{h_{i}}\left\|\left(u_{j}\right)_{j}-\left(u_{j}\right)_{i}\right\|_{L^{2}\left(F_{i j}\right)}^{2}\right\} \\
\leq & C\left(1+\log \frac{H_{i}}{h_{i}}\right)\left\{\tilde{d}_{i}\left(u_{i}, u_{i}\right)+\tilde{d}_{j}\left(u_{j}, u_{j}\right)\right\}
\end{align*}
$$

and similarly

$$
\begin{equation*}
\rho_{i} \gamma_{k i j}^{2}\left\|\left(u_{i}\right)_{i}-\left(u_{k}\right)_{i}\right\|_{L^{2}\left(E_{i j k}\right)}^{2} \leq C\left(1+\log \frac{H_{i}}{h_{i}}\right)\left\{\tilde{d}_{i}\left(u_{i}, u_{i}\right)+\tilde{d}_{k}\left(u_{k}, u_{k}\right)\right\} . \tag{21}
\end{equation*}
$$

Hence, by adding (20) and (21), we obtain

$$
\begin{equation*}
\rho_{i}\left\|\theta_{E_{i j k}}\left(v_{i}\right)_{i}\right\|_{L^{2}\left(E_{i j k}\right)}^{2} \leq C\left(1+\log \frac{H_{i}}{h_{i}}\right)\left\{\tilde{d}_{i}\left(u_{i}, u_{i}\right)+\tilde{d}_{j}\left(u_{j}, u_{j}\right)+\tilde{d}_{k}\left(u_{k}, u_{k}\right)\right\} . \tag{22}
\end{equation*}
$$

Substituting (19) and (22) into (16), we get

$$
\begin{equation*}
\rho_{i}\left\|\nabla\left(v_{i}\right)_{i}\right\|_{L^{2}\left(\Omega_{i}\right)}^{2} \leq C\left(1+\log \frac{H_{i}}{h_{i}}\right)^{2}\left\{\tilde{d}_{i}\left(u_{i}, u_{i}\right)+\tilde{d}_{j}\left(u_{j}, u_{j}\right)+\tilde{d}_{k}\left(u_{k}, u_{k}\right)\right\} \tag{23}
\end{equation*}
$$

We now estimate the second term of the RHS of (14). Note that $\left(v_{i}\right)_{i}$ and $\left(v_{i}\right)_{j}$ are defined on different meshes. In addition, the nodal values of $\left(v_{i}\right)_{i}(x)$, are defined by different formulas if a node $x$ belongs to $F_{i j h}$ or to $E_{i j k h} \subset \partial F_{i j}$, see (6) and (8). The same holds for $\left(v_{i}\right)_{j}(x)$. These issues must be taken into account when estimating the second terms of the RHS of (14). We have

$$
\begin{align*}
\left\|\left(v_{i}\right)_{i}-\left(v_{i}\right)_{j}\right\|_{L^{2}\left(F_{i j}\right)}^{2} & \leq 2\left\{\left\|\left(v_{i}\right)_{i}-Q_{i, F_{i j}}\left(v_{i}\right)_{j}\right\|_{L^{2}\left(F_{i j}\right)}^{2}+\left\|\left(v_{i}\right)_{j}-Q_{i, F_{i j}}\left(v_{i}\right)_{j}\right\|_{L^{2}\left(F_{i j}\right)}^{2}\right\} \\
& \equiv 2\{I+I I\} . \tag{24}
\end{align*}
$$

Using (15) and that $w_{i}=\theta_{F_{i j}} w_{i}+\theta_{\partial F_{i j}} w_{i}$ for $w_{i} \in X_{i}\left(\Omega_{i}\right)_{\mid \overline{F_{i j}}}$, we have

$$
\begin{align*}
I & \leq C\left\{\left\|\theta_{F_{i j}}\left[\left(v_{i}\right)_{i}-Q_{i, F_{i j}}\left(v_{i}\right)_{j}\right]\right\|_{L^{2}\left(F_{i j}\right)}^{2}+\left\|\theta_{\partial F_{i j}}\left[\left(v_{i}\right)_{i}-Q_{i, F_{i j}}\left(v_{i}\right)_{j}\right]\right\|_{L^{2}\left(F_{i j}\right)}^{2}\right\} \\
& \equiv C\left\{I_{F_{i j}}+I_{\partial F_{i j}}\right\} . \tag{25}
\end{align*}
$$

To estimate $I_{F_{i j}}$, we first represent $\left(v_{i}\right)_{j}=\theta_{F_{j i}}\left(v_{i}\right)_{j}+\theta_{\partial F_{j i}}\left(v_{i}\right)_{j}$ to obtain

$$
\begin{align*}
I_{F_{i j}} & \left.\left.\leq 2\left\{\| \theta_{F_{i j}}\left\{\left(v_{i}\right)_{i}-Q_{i, F_{i j}} \theta_{F_{j i}}\left(v_{i}\right)_{j}\right\}\right)\left\|_{L^{2}\left(F_{i j}\right)}^{2}+\right\| \theta_{F_{i j}} Q_{i, F_{i j}} \theta_{\partial F_{j i}}\left(v_{i}\right)_{j}\right) \|_{L^{2}\left(F_{i j}\right)}^{2}\right\} \\
& \equiv 2\left\{I_{F i j}^{(1)}+I_{F i j}^{(2)}\right\} \tag{26}
\end{align*}
$$

Using (6) and (7), we have

$$
I_{F i j}^{(1)} \leq C \gamma_{j i}^{2}\left\|\theta_{F_{i j}}\left\{\left[\left(u_{i}\right)_{i}-\left(u_{j}\right)_{i}\right]-Q_{i, F_{i j}} \theta_{F_{j i}}\left[\left(u_{i}\right)_{j}-\left(u_{j}\right)_{j}\right]\right\}\right\|_{L^{2}\left(F_{i j}\right)}^{2}
$$

and by adding and subtracting $\theta_{F_{i j}} Q_{i, F_{i j}} \theta_{\partial F_{j i}}\left[\left(u_{i}\right)_{j}-\left(u_{j}\right)_{j}\right]$, we obtain

$$
\begin{align*}
I_{F i j}^{(1)} & \leq C \gamma_{j i}^{2}\left\{\| \theta_{F_{i j}}\left\{\left[\left(u_{i}\right)_{i}-\left(u_{j}\right)_{i}\right]-Q_{i, F_{i j}}\left[\left(u_{i}\right)_{j}-\left(u_{j}\right)_{j}\right]\right)\right\} \|_{L^{2}\left(F_{i j}\right)}^{2}+ \\
& \left.\left.\left.+\| \theta_{F_{i j}} Q_{i, F_{i j}} \theta_{\partial F_{j i}}\left[\left(u_{i}\right)_{j}-\left(u_{j}\right)_{j}\right]\right)\right\} \|_{L^{2}\left(F_{i j}\right)}^{2}\right\} \\
& \leq C \gamma_{j i}^{2}\left\{\left\|\left(u_{i}\right)_{i}-Q_{i, F_{i j}}\left(u_{i}\right)_{j}\right\|_{L^{2}\left(F_{i j}\right)}^{2}+\left\|\left(u_{j}\right)_{i}-Q_{i, F_{i j}}\left(u_{j}\right)_{j}\right\|_{L^{2}\left(F_{i j}\right)}^{2}+\right. \\
& \left.+\sum_{E_{j i k} \subset \partial F_{j i}} h_{j}\left\|\left(u_{i}\right)_{j}-\left(u_{j}\right)_{j}\right\|_{L^{2}\left(E_{j i k}\right)}^{2}\right\} \leq C \gamma_{j i}^{2}\left\{\left\|\left(u_{i}\right)_{i}-\left(u_{i}\right)_{j}\right\|_{L^{2}\left(F_{i j}\right)}^{2}+\right. \\
& \left.+\left\|\left(u_{j}\right)_{i}-\left(u_{j}\right)_{j}\right\|_{L^{2}\left(F_{i j}\right)}^{2}+h_{j}\left(1+\log \frac{H_{j}}{h_{j}}\right)\left|\left(u_{i}\right)_{j}-\left(u_{j}\right)_{j}\right|_{H^{1 / 2}\left(F_{j i}\right)}^{2}\right\} \\
& \leq C \gamma_{j i}^{2}\left\{\left\|\left(u_{i}\right)_{i}-\left(u_{i}\right)_{j}\right\|_{L^{2}\left(F_{i j}\right)}^{2}+\left\|\left(u_{j}\right)_{i}-\left(u_{j}\right)_{j}\right\|_{L^{2}\left(F_{i j}\right)}^{2}+\right.  \tag{27}\\
& +\left(1+\log \frac{H_{j}}{h_{j}}\right)\left(h_{j}\left|\left(u_{i}\right)_{i}\right|_{H^{1}\left(\Omega_{i}\right)}^{2}+h_{j}\left|\left(u_{j}\right)_{j}\right|_{H^{1}\left(\Omega_{j}\right)}^{2}+\left\|\left(u_{i}\right)_{i}-\left(u_{i}\right)_{j}\right\|_{L^{2}\left(F_{i j}\right)}^{2}\right\}
\end{align*}
$$

where we have used the $L^{2}$-stability of $Q_{i, F_{i j}}$ and $\theta_{F_{j i}}$, the constraint $\left(\bar{u}_{i}\right)_{j, E_{j i k}}=$ $\left(\bar{u}_{j}\right)_{j, E_{j i k}}$ and Lemma 4.17 in [3]. For the last inequality of (27), we have used a similar argument as in (18).

To estimate $I_{F_{i j}}^{(2)}$, first note that

$$
\begin{equation*}
I_{F_{i j}}^{(2)} \leq C h_{j}\left\|\left(v_{i}\right)_{j}\right\|_{L^{2}\left(\partial F_{j i}\right)}^{2} \leq C h_{j} \sum_{E_{j i k} \subset \partial F_{j i}}\left\|\left(v_{i}\right)_{j}\right\|_{L^{2}\left(E_{j i k}\right)}^{2} \tag{28}
\end{equation*}
$$

and using the definition of $\left(v_{j}\right)_{i}$, see (9), we have

$$
\begin{equation*}
\left\|\left(v_{i}\right)_{j}\right\|_{L^{2}\left(E_{j i k}\right)}^{2} \leq 2\left\{\gamma_{j i k}^{2}\left\|\left(u_{i}\right)_{j}-\left(u_{j}\right)_{j}\right\|_{L^{2}\left(E_{j i k}\right)}^{2}+\gamma_{k i j}^{2}\left\|\left(u_{i}\right)_{j}-\left(u_{k}\right)_{j}\right\|_{L^{2}\left(E_{j i k}\right)}^{2}\right\} \tag{29}
\end{equation*}
$$

The first term of the RHS of (29) is estimated as in (20) while the second term as

$$
\begin{gather*}
h_{j}\left\|\left(u_{i}\right)_{j}-\left(u_{k}\right)_{j}\right\|_{L^{2}\left(E_{j i k}\right)}^{2} \leq 2 h_{j}\left\{\left\|\left(u_{i}\right)_{j}-\left(u_{j}\right)_{j}\right\|_{L^{2}\left(E_{j i k}\right)}^{2}+\left\|\left(u_{j}\right)_{j}-\left(u_{k}\right)_{j}\right\|_{L^{2}\left(E_{j i k}\right)}^{2}\right\} \\
\leq C\left(1+\log \frac{H_{j}}{h_{j}}\right)\left\{h_{j}\left|\left(u_{i}\right)_{i}\right|_{H^{1}\left(\Omega_{i}\right)}^{2}+h_{j}\left|\left(u_{j}\right)_{j}\right|_{H^{1}\left(\Omega_{j}\right)}^{2}+\left\|\left(u_{i}\right)_{j}-\left(u_{i}\right)_{i}\right\|_{L^{2}\left(F_{j i}\right)}^{2}\right. \\
\left.+h_{j}\left|\left(u_{k}\right)_{k}\right|_{H^{1}\left(\Omega_{j}\right)}^{2}+\left\|\left(u_{k}\right)_{j}-\left(u_{k}\right)_{k}\right\|_{L^{2}\left(F_{j k}\right)}^{2}\right\} \tag{30}
\end{gather*}
$$

Substituting (29) and (30) into (28) and adding with (27), see (26), we obtain

$$
\frac{\rho_{i} \delta}{l_{i j} h_{i j}} I_{F_{i j}} \leq C\left(1+\log \frac{H}{h}\right)\left\{\frac{h_{j}}{h_{i j}} \tilde{d}_{i}\left(u_{i}, u_{i}\right)+\frac{h_{j}}{h_{i j}} \tilde{d}_{j}\left(u_{j}, u_{j}\right)+\sum_{E_{i j k} \subset \partial F_{i j}} \frac{h_{j}}{h_{i j}} \tilde{d}_{k}\left(u_{k}, u_{k}\right)\right\}
$$

We now estimate $I_{\partial F_{i j}}$, see (25). Note that $\left(\bar{v}_{i}\right)_{j, F_{j i}}=0$ implies a zero average of $Q_{i, F_{i j}}\left(v_{i}\right)_{j}$ on $F_{i j}$. We also have $\left(\bar{v}_{j}\right)_{i, F_{i j}}=0$. Using previous arguments, we obtain

$$
\begin{align*}
& I_{\partial F_{i j}} \leq C h_{i}\left\|\left(v_{i}\right)_{i}-Q_{i, F_{i j}}\left(v_{i}\right)\right\|_{L^{2}\left(\partial F_{i j}\right)}^{2} \\
\leq & C h_{i}\left\{\left\|\left(v_{i}\right)_{i}\right\|_{L^{2}\left(\partial F_{i j}\right)}^{2}+\left\|Q_{i, F_{i j}} \theta_{F_{j i}}\left(v_{i}\right)_{j}\right\|_{L^{2}\left(\partial F_{i j}\right)}^{2}+\left\|Q_{i, F_{i j}} \theta_{\partial F_{j i}}\left(v_{i}\right)_{j}\right\|_{L^{2}\left(\partial F_{i j}\right)}^{2}\right\} \\
\leq & C \sum_{E_{i j k} \subset \partial F_{i j}}\left\{h_{i}\left\|\left(v_{i}\right)_{i}\right\|_{L^{2}\left(E_{i j k}\right)}^{2}+h_{i}\left\|Q_{i, F_{i j}} \theta_{F_{j i}}\left(v_{i}\right)\right\|_{L^{2}\left(E_{i j k}\right)}^{2}+h_{j}\left\|\left(v_{i}\right)_{j}\right\|_{L^{2}\left(E_{j k}\right)}^{2}\right\} \\
\equiv & C \sum_{E_{i j k} \subset \partial F_{i j}}\left\{I_{E_{i j k}}^{(1)}+I_{E_{i j k}}^{(2)}+I_{E_{i j k}}^{(3)}\right\} . \tag{31}
\end{align*}
$$

It is not hard to see, using the same argument as priviously, that

$$
\begin{align*}
& \quad I_{E_{i j k}}^{(1)}=h_{i}\left\|\gamma_{j i k}\left[\left(u_{i}\right)_{i}-\left(u_{j}\right)_{i}\right]+\gamma_{k i j}\left[\left(u_{i}\right)_{i}-\left(u_{k}\right)_{i}\right]\right\|_{L^{2}\left(E_{i j k}\right)}^{2}  \tag{32}\\
& \quad \leq C\left(1+\log \frac{H_{i}}{h_{i}}\right)\left\{\gamma_{j i k}^{2}\left(h_{i}\left|\left(u_{i}\right)_{i}\right|_{H^{1}\left(\Omega_{i}\right)}^{2}+h_{i}\left|\left(u_{j}\right)_{j}\right|_{H^{1}\left(\Omega_{j}\right)}^{2}+\left\|\left(u_{j}\right)_{j}-\left(u_{j}\right)_{i}\right\|_{L^{2}\left(F_{i j}\right)}^{2}\right)\right. \\
& \left.+\gamma_{k i j}^{2}\left(h_{i}\left|\left(u_{i}\right)_{i}\right|_{H^{1}\left(\Omega_{i}\right)}^{2}+h_{i}\left|\left(u_{k}\right)_{k}\right|_{H^{1}\left(\Omega_{k}\right)}^{2}+\left\|\left(u_{k}\right)_{k}-\left(u_{k}\right)_{i}\right\|_{L^{2}\left(F_{i k}\right)}^{2}\right)\right\}, \\
&  \tag{33}\\
& \quad I_{E_{i j k}}^{(2)} \leq C h_{i} \gamma_{j i}^{2}\left\|Q_{i, F_{i j}} \theta_{F_{j i}}\left[\left(u_{j}\right)_{j}-\left(u_{i}\right)_{j}\right]\right\|_{L^{2}\left(E_{i j k}\right)}^{2} \\
& \leq C h_{i} \gamma_{j i}^{2}\left\{\left\|Q_{i, F_{i j}}\left[\left(u_{j}\right)_{j}-\left(u_{i}\right)_{j}\right]\right\|_{L^{2}\left(E_{i j k}\right)}^{2}+\left\|Q_{i, F_{i j}} \theta_{\partial_{F_{j i}}}\left[\left(u_{j}\right)_{j}-\left(u_{i}\right)_{j}\right]\right\|_{L^{2}\left(E_{i j k}\right)}^{2}\right\} \\
& \leq C \gamma_{j i}^{2}\left\{\left.h_{i}\left(1+\log \frac{H_{i}}{h_{i}}\right) \right\rvert\,\left(u_{j}\right)_{j}-\left(u_{i}\right)_{j}\left\|_{H^{1 / 2}\left(F_{j i}\right)}^{2}+h_{j}\right\|\left(u_{j}\right)_{j}-\left(u_{i}\right)_{j} \|_{L^{2}\left(E_{i j k}\right)}^{2}\right\} \\
& \leq C \gamma_{j i}^{2}\left(h_{i}+h_{j}\right)\left(1+\log \frac{H}{h}\right)\left|\left(u_{j}\right)_{j}-\left(u_{i}\right)_{j}\right|_{H^{1 / 2}\left(F_{j i}\right)}^{2} \\
& \leq C \gamma_{j i}^{2}\left(h_{i}+h_{j}\right)\left(1+\log \frac{H}{h}\right)\left\{\left|\left(u_{i}\right)_{i}\right|_{H^{1}\left(\Omega_{i}\right)}^{2}+\left|\left(u_{j}\right)_{j}\right|_{H^{1}\left(\Omega_{j}\right)}^{2}+\frac{1}{h_{i}}\left\|\left(u_{i}\right)_{i}-\left(u_{i}\right)_{j}\right\|_{L^{2}\left(F_{i j}\right)}^{2}\right\}, \\
& \\
& \quad I_{E_{i j k}}^{33} \leq C h_{j}\left\|\left(\gamma_{j i k}\left[\left(u_{i}\right)_{j}-\left(u_{j}\right)_{j}\right]+\gamma_{k i j}\left[\left(u_{i}\right)_{j}-\left(u_{k}\right)_{j}\right]\right)\right\|_{L^{2}\left(E_{j i k}\right)}^{2} \leq C\left(1+\log \frac{H_{j}}{h_{j}}\right) *  \tag{34}\\
& \\
& \quad\left\{\left(\gamma_{j i k}^{2}+\gamma_{j i k}^{2}\right)\left(h_{j}\left|\left(u_{i}\right)_{i}\right|_{H^{1}\left(\Omega_{i}\right)}^{2}+h_{j}\left|\left(u_{j}\right)_{j}\right|_{H^{1}\left(\Omega_{j}\right)}^{2}+\left\|\left(u_{i}\right)_{i}-\left(u_{i}\right)_{j}\right\|_{L^{2}\left(F_{i j}\right)}^{2}\right)\right. \\
& \left.\quad+\gamma_{k i j}^{2}\left(h_{j}\left|\left(u_{i}\right)_{i}\right|_{H^{1}\left(\Omega_{i}\right)}^{2}+h_{j}\left|\left(u_{k}\right)_{k}\right|_{H^{1}\left(\Omega_{k}\right)}^{2}+\left\|\left(u_{k}\right)_{k}-\left(u_{k}\right)_{j}\right\|_{L^{2}\left(F_{j k}\right)}^{2}\right)\right\} .
\end{align*}
$$

Substituting (32), (33) and (34) into (31), we obtain
$\frac{\rho_{i} \delta}{l_{i j} h_{i j}} I_{\partial F_{i j}} \leq C\left(1+\log \frac{H}{h}\right)\left\{\frac{h_{i}+h_{i}}{h_{i j}}\left(\tilde{d}_{i}\left(u_{i}, u_{i}\right)+\tilde{d}_{j}\left(u_{j}, u_{j}\right)\right)+\sum_{E_{i j k} \subset \partial F_{i j}} \frac{h_{j k}}{h_{i j}} \tilde{d}_{k}\left(u_{k}, u_{k}\right)\right\}$.
It remains to estimate $I I$ in (24). Using a $L^{2}$-projection property, we have

$$
\begin{align*}
I I & \leq C h_{i}\left|\left(v_{i}\right)_{j}\right|_{H^{1 / 2}\left(F_{j i}\right)}^{2} \leq C\left\{h_{i}\left|\theta_{F_{j i}}\left(v_{i}\right)_{j}\right|_{H^{1 / 2}\left(F_{j i}\right)}^{2}+h_{i}\left|\theta_{\partial F_{j i}}\left(v_{i}\right)_{j}\right|_{H^{1 / 2}\left(F_{j i}\right)}^{2}\right\} \\
& \equiv C\left\{I I_{F_{j i}}+I I_{\partial F_{j i}}\right\} . \tag{35}
\end{align*}
$$

Using similar arguments as above, we obtain

$$
\begin{align*}
& \quad I I_{F_{j i}} \leq C h_{i}\left(1+\log \frac{H_{j}}{h_{j}}\right)^{2} \gamma_{j i}^{2}\left|\left(u_{i}\right)_{j}-\left(u_{j}\right)_{j}\right|_{H^{1 / 2}\left(F_{j i}\right)}^{2}  \tag{36}\\
& \leq C\left(1+\log \frac{H_{j}}{h_{j}}\right)^{2} \gamma_{j i}^{2}\left\{h_{i}\left|\left(u_{i}\right)_{i}\right|_{H^{1}\left(\Omega_{i}\right)}^{2}+h_{i}\left|\left(u_{j}\right)_{j}\right|_{H^{1}\left(\Omega_{j}\right)}^{2}+\frac{h_{i}}{h_{j}}\left\|\left(u_{i}\right)_{i}-\left(u_{i}\right)_{j}\right\|_{L^{2}\left(F_{i j}\right)}^{2}\right\}, \\
& \quad I I_{\partial F_{j i}} \leq C \frac{h_{i}}{h_{j}}\left\|\theta_{\partial F_{j i}}\left(v_{i}\right)_{j}\right\|_{L^{2}\left(F_{j i}\right)}^{2} \leq C h_{i} \sum_{E_{j i k} \subset \partial F_{j i}}\left\|\left(v_{i}\right)_{j}\right\|_{L^{2}\left(E_{j i k}\right)}^{2}, \tag{37}
\end{align*}
$$

and

$$
\begin{align*}
& h_{i}\left\|\left(v_{i}\right)_{j}\right\|_{L^{2}\left(E_{j i k}\right)}^{2} \leq C\left(1+\log \frac{H_{j}}{h_{j}}\right)\left\{\left(\gamma_{j i k}+\gamma_{k i j}\right) *\right.  \tag{38}\\
& \left(h_{i}\left|\left(u_{i}\right)_{i}\right|_{H^{1}\left(\Omega_{i}\right)}^{2}+h_{i}\left|\left(u_{j}\right)_{j}\right|_{H^{1}\left(\Omega_{j}\right)}^{2}+\frac{h_{i}}{h_{j}}\left\|\left(u_{i}\right)_{j}-\left(u_{i}\right)_{i}\right\|_{L^{2}\left(F_{j i}\right)}^{2}\right) \\
& \left.+\gamma_{k i j}\left(h_{i}\left|\left(u_{k}\right)_{k}\right|_{H^{1}\left(\Omega_{k}\right)}^{2}+h_{i}\left|\left(u_{j}\right)_{j}\right|_{H^{1}\left(\Omega_{j}\right)}^{2}+\frac{h_{i}}{h_{j}}\left\|\left(u_{k}\right)_{j}-\left(u_{k}\right)_{k}\right\|_{L^{2}\left(F_{j k}\right)}^{2}\right)\right\} .
\end{align*}
$$

Substituting (38) into (37) and adding (36), see (35), we obtain
$\frac{\rho_{i} \delta}{l_{i j} h_{i j}} I I \leq C\left(1+\log \frac{H_{j}}{h_{j}}\right)\left(\frac{h_{i}}{h_{i j}} \tilde{d}_{i}\left(u_{i}, u_{i}\right)+\frac{h_{i}}{h_{i j}} \tilde{d}_{j}\left(u_{j}, u_{j}\right)+\sum_{E_{i j k} \subset \partial F_{i j}} \frac{h_{j k}}{h_{i j}} \frac{h_{i}}{h_{j}} \tilde{d}_{k}\left(u_{k}, u_{k}\right)\right\}$.
The proof is complete.
Remark 1. The proof of Lemma 1 also works with minor modifications when $\bar{F}_{i j}=$ $\partial \Omega_{i} \cap \partial \Omega_{j}$ is an union of faces, also, for FETI-DP with corner and average face constraints only, or with corner and edge constraints only.

Acknowledgements The first author has been partially supported by the Polish NSC grant 2011/01/B/ST1/01179.

## References

1. Dryja, M.: On discontinuous Galerkin methods for elliptic problems with discontinuous coefficients. Comput. Methods Appl. Math. 3(1), 76-85 (electronic) (2003). Dedicated to Raytcho Lazarov
2. Dryja, M., Galvis, J., Sarkis, M.: A FETI-DP preconditioner for a composite finite element and discontinuous Galerkin method. SIAM J. Numer. Anal. 51(1), 400-422 (2013). DOI 10.1137/100796571. URL http://dx.doi.org/10.1137/100796571
3. Toselli, A., Widlund, O.: Domain decomposition methods-algorithms and theory, Springer Series in Computational Mathematics, vol. 34. Springer-Verlag, Berlin (2005)

[^0]:    ${ }^{1}$ Department of Mathematics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland, e-mail: dry ja@mimuw.edu.pl . ${ }^{2}$ Mathematical Sciences Department, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA, and and Instituto de Matemática Pura e Aplicada - IMPA, Estrada Dona Castorina 110, CEP 22460-320, Rio de Janeiro, Brazil, e-mail: msarkis @ wpi.edu

