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1 Introduction and Motivation

We consider the numerical solution of nonsymmetric linear systems of equations of

the form

Au = f, (1)

that arise from the discretization of partial differential equations (PDEs). In practical

problems, the number of mesh points is very large, and thus also the number of un-

knowns in (1), and the resulting matrix is large and sparse. In these circumstances,

iterative methods are often used, due to their ability to deal more effectively with

a high degree of sparsity. A popular iterative method is the Generalized Minimum

Residual iterative scheme, or GMRES [8, 9, 10]. This method is based on minimiz-

ing at the kth iterate the residual within the affine Krylov subspace u0 +K k(A,r0),
where u0 is an initial vector, r0 = f−Au0 is the initial residual, and

K
k(A,r0) = span(r0,Ar0, . . . ,A

k−1r0).

The performance of GMRES is often (though not exclusively) determined by the

structure of the eigenvalues of the matrix A. Loosely speaking, if they are strongly

clustered, then GMRES is expected to converge fast. To accomplish a clustering

effect, a preconditioner M is typically used: instead of solving (1) we solve, say,

AMũ = f,

where M is constructed so that AM has a more favorable eigenstructure than A. Upon

incorporating the preconditioner M, the Krylov subspace changes accordingly: the

matrix associated with the subspace becomes AM, and the preconditioned residual

is now minimized.

A common way of dealing with the large number of degrees of freedom in a

fine mesh is to break the problem down into a number of more manageable sub-

problems. This amounts to the technique of domain decomposition; see, e.g., [11].

We can then incorporate preconditioners that work on the subdomains into the gen-

eral iterative framework.

The additive Schwarz preconditioner [11] and its restricted variant (RAS) [3],

can be written in the form

1 Department of Computer Science, University of British Columbia, Vancouver, B.C., Canada.

e-mail: greif@cs.ubc.ca ·2 Scientific Computing Department, STFC Rutherford Appleton

Laboratory, Chilton, Didcot, UK. e-mail: tyrone.rees@stfc.ac.uk ·3 Department of Math-

ematics, Temple University, Philadelphia, Pennsylvania, USA. e-mail: szyld@temple.edu

1



2 Chen Greif, Tyrone Rees, and Daniel B. Szyld

M =
t

∑
i=1

R̃iA
−1
i RT

i ,

where t is usually the number of subdomains, R̃i is a restriction operator, RT
i is a

prolongation operator, and Ai = RT
i ARi is the restriction of A onto the ith subdomain.

A possible generalization would be to use a weighted additive or restricted addi-

tive Schwarz preconditioner, say of the form

M(k) =
t

∑
i=1

α
(k)
i R̃iA

−1
i RT

i ,

where the weights α
(k)
i are chosen at the kth iteration of GMRES so as to minimize

the preconditioned residual, cf. [1]1. What we propose in this paper is to go a step

further, and implicitly find at each iteration both the current weights and all the

weights at the previous iterations, so as to minimize the residual at the current step.

Incorporating weights which change from one iteration to the next is significant

and we can no longer talk about a standard iterative method with a single precondi-

tioner. Instead, the proposed strategy fits into the MPGMRES paradigm the authors

recently described in [5], where more than one preconditioner may be applied si-

multaneously.2 Our main goal in this paper is to show that this methodology is par-

ticularly effective in the domain decomposition paradigm, since we can associate

each subdomain with a specific, unique preconditioner.

An outline of the remainder of this paper follows. In Section 2 we briefly describe

Additive and Restricted Additive Schwarz Preconditioning. In Section 3 we describe

the MPGMRES algorithm. We address the question of computational cost of the

algorithm and characterize the generalized Krylov subspace and its unique features

in domain decomposition setting. In Section 4 we provide some details on numerical

experiments. Finally, in Section 5 we make some concluding remarks.

2 Additive Schwarz Preconditioning

Suppose we divide the domain Ω containing n nodes into t subdomains Ω1, . . . ,Ωt ,

which overlap by bands of width δ nodes. Suppose each subdomain consists of

mi ≪ n nodes, which we denote as the entries of the set Ii. We can define a prolon-

gation matrix RT
i,δ ∈ R

n×mi which extends vectors u(i) ∈ R
mi to R

n by

(RT
i,δ u(i))k =

{
(u(i))k if k ∈ Ii

0 otherwise.

1 We point out that this is completely different than the approach in [4], where the weights are

zeros and ones, and the emphasis is on asynchronous iterations.
2 This algorithm extends previous work on using a combination of preconditioners – e.g., flexible

GMRES [7] with alternating preconditioners, as described by Rui et al. [6] in the method they call

multipreconditioned GMRES – by making an ‘optimal’ choice of weights. See [5] for a discussion.
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The transpose of this matrix defines a restriction operator Ri which restricts vec-

tors in R
n to the subdomain Ωi. The restriction of the discretized PDE, A, to the ith

subdomain is given by Ai = Ri,δ ART
i,δ .

We can now define the additive Schwarz preconditioner as

M :=
t

∑
i=1

RT
i,δ A−1

i Ri,δ =
t

∑
i=1

Mi, (2)

where Mi := RT
i,δ (Ri,δ ART

i,δ )
−1Ri,δ . Note that, by the definition of RT

i,δ , there exists

some permutation Πi such that, for all x,

ΠiMix = (×·· ·× 0 · · · · · ·0)T ,

i.e., the vector resulting from multiplication by the Mi (regardless of the permuta-

tion) will be sparse.

We can also define a restricted additive Schwarz (RAS) preconditioner [5] by

considering the prolongation RT
i,0 instead of RT

i,δ in (2).

3 The MPGMRES Algorithm for Domain Decomposition

Problems

MPGMRES [5] is a minimal residual algorithm for solving a linear system of equa-

tions which allows the user to apply more than one preconditioner simultaneously

(see also [2] for a multipreconditioned version of the conjugate gradient method).

At each step, new search directions are added to the search space, corresponding

to AMiv for each i = 1, . . . , t, and for each basis vector v of the current search

space. The multipreconditioned search directions are all combined into a gener-

alized Krylov subspace, and the minimization procedure requires solving a linear

least-squares problem. As opposed to standard GMRES, here the subspace grows

quickly due to the presence of multiple search directions and the projection can

be expressed in terms of a block upper Hessenberg matrix; see Figure 1. It has been

shown in [5] that a so-called selective MPGMRES (sMPGMRES) algorithm – which

chooses a subset of t search directions and hence keeps the size of the search space

growing only linearly – can be an effective method. MPGMRES (in both complete

and selective forms) is given as Algorithm 1.

3.1 Computational Work

In the selective algorithm we need t matrix-vector products and t preconditioner

solves per iteration, as opposed to one for both in the standard preconditioned

GMRES algorithm. The main other source for work is the inner products. Note
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(a) Complete MPGMRES (b) Selective MPGMRES

Fig. 1 Schematic of Arnoldi decompositions in complete and selective MPGMRES

Algorithm 1 MPGMRES

Choose u0, r0 = f−A u0

β = ‖r0‖, v1 = r0/β
Z1 = [M1v1 · · ·Mtv1]
for k = 1, . . ., until convergence do

W = A Zk

for j = 1, . . . ,k do

H j,k = (Vj)
TW

W =W −VjH j,k

end for

W =Vk+1Hk+1,k (skinny QR factorization)

yk = argmin‖β e1 − H̃ky‖2

uk = u0 +[Z1 · · ·Zk]yk

Zk+1 =

{
[M1Vk+1 · · ·MtVk+1] for complete MPGMRES

[M1Vk+11 · · ·MtVk+11] for selective MPGMRES

end for

that every entry in the Hessenberg matrix Hk is the result of an inner product,

and these are the only inner products in the algorithm. MPGMRES therefore needs

(2k− 1) t2

2
+ 3

2
t inner products at the kth step [5, Table 4.1].

Significantly, in the domain decomposition setting, due to the nature of the stan-

dard Additive Schwarz preconditioner, the preconditioning step is exactly the same

cost when using both selective MPGMRES and standard preconditioned GMRES.

Moreover, since the vectors we obtain by applying the preconditioners are sparse,

the cost of the matrix-vector products will also be of the same order as in the stan-

dard GMRES algorithm – the only extra expense coming from the overlapping

nodes. Indeed, if we use RAS, then the cost of a matrix-vector product would be

identical here too. While we studied RAS in the context of MPGMRES in [5], in the

rest of this paper we restrict our comments and experiments to additive Schwarz.

The extra cost in the MPGMRES approach therefore lies completely with the inner

products. The vectors here are, in general, dense, as we lose sparsity of W in the

modified Gram-Schmidt step (in the inner loop of Algorithm 1).
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3.2 The subspace in complete MPGMRES

Recall that (complete) MPGMRES minimizes over the multi-Krylov subspace

K
k

M1,...,Mt
(A,r0),

where

K
1

M1,...,Mt
(A,r0) = span{M1Ar0, . . . ,MtAr0},

K
2

M1,...,Mt
(A,r0) = span{M1Ar0, . . . ,MtAr0,M1AM1r0, . . . ,M1AMtr0, . . .

. . . ,MtAM1r0, . . . ,Mt AMtr0},

etc. Usually the size of this space grows exponentially with each iteration. However,

in an additive Schwarz context the situation is not quite so dire, as we see below.

First, note that each preconditioned matrix is a projection, since

MiAMi = RT
i,δ (Ri,δ ART

i,δ )
−1Ri,δ ART

i,δ (Ri,δ ART
i,δ )

−1Ri,δ = Mi.

Hence applying Mi to AMi does nothing to enrich the space.

Next, note that

MiAM j = RT
i,δ (Ri,δ ART

i,δ )
−1Ri,δ ART

j,δ (R j,δ ART
j,δ )

−1R j,δ .

In the middle of this expression is the cross-term Ri,δ ART
j,δ . Now note that

Ri,δ ART
j,δ = 0 whenever Ii ∩ I j = /0. Provided the overlap δ is not large enough to

touch two subdomains, this implies that only the contributions from sub-domains

that touch each other add anything to the multi-Krylov subspace. This is the number

of edges + corners in 2D (a maximum of 8 for a tensor product-based grid), and

these plus the number of faces in 3D (a max of 26 for a tensor product-based grid).

Altogether, this means that

dim(K k
M1,...,Mt

(A,r0)) = (kc+ 1)t,

where c is a constant independent of k, t. Therefore, even in the complete MPGMRES

case, we only have linear growth in the search space.

4 Numerical Experiments

If we split the domain into a small number of subdomains, i.e., we have a high

proportion of subdomains lying on an edge, then there may not be much difference

between the spaces minimized over by the selective algorithm and the complete

algorithm.



6 Chen Greif, Tyrone Rees, and Daniel B. Szyld

For example, consider the special case where we split the domain Ω into two

subdomains, Ω1 and Ω2 such that Ω1 ∪Ω2 = Ω . Then it can be shown [5, Sec-

tion 5.2.1] that, provided the subdomain solves are exact, the space over which we

minimize in both selective and complete MPGMRES are identical.

Figure 2 shows the convergence curves for solving the advection-diffusion equa-

tion

−∇2u+ω ·∇u = f in Ω (3)

u = 0 on ∂Ω , (4)

where Ω denotes the unit square and ω = 10
(
cos(π

3
),sin(π

3
)
)T

. This is discretized

using finite differences with a uniform mesh size h, and the right hand side is taken

to be the vector of ones. Thus, in 2D, n = 1/h2 and in 3D, n = 1/h3.
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(a) 2D, h = {2−3,2−4,2−5,2−6,2−7,2−8}
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(b) 3D, h = {2−2,2−3,2−4,2−5}

Fig. 2 Convergence curves for solving the advection-diffusion equation (3-4) with two subdomains

in 2D and 3D. The iteration number is plotted along the x-axis, and ‖rk‖2 is plotted along the y-

axis.

As we see in Figure 2, the iteration counts are significantly better using a mul-

tipreconditioned approach. Despite only having a serial MATLAB code, this also

corresponds to significantly better timings, as is seen in Table 1: it is anticipated

that the difference between the two approaches would be even more striking in a

parallel implementation.

For a large numbers of subdomains, the work involved in the inner products and

vector updates becomes significant, even though the work in actually applying the

preconditioners is essentially the same as for the usual AS method. Convergence

curves for the problem (3)-(4) are given in Figure 3.

Although the iteration counts are impressive for a large number of subdomains

(with, e.g., 101 iterations for GMRES with an additive Schwarz preconditioner be-

ing reduced to 17 iterations with selective MPGMRES for 256 subdomains), the

timings in this case are not yet competitive – e.g., for the case with 256 subdomains

GMRES converges in 2.5s whereas sMPGMRES takes 9s. This is due to the fact
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Table 1 Timings for sMPGMRES and GMRES with two subdomains in 2D (left) and 3D (right)

h sMPGMRES GMRES

2−3 0.008 0.007

2−4 0.015 0.023

2−5 0.13 0.087

2−6 0.32 0.55

2−7 2.1 3.7

2−8 15.3 28.6

h sMPGMRES GMRES

2−2 0.010 0.011

2−3 0.059 0.058

2−4 1.03 1.49

2−5 25.6 39.7
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MPGMRES, 256 subs
GMRES, 256 subs

Fig. 3 Convergence curves for multiple subdomains in 2D (h = 2−6). The iteration number is

plotted along the x-axis, and ‖rk‖2 is plotted along the y-axis.

that we are using a proof-of-concept (serial) MATLAB code. Recall that the only

extra work between the methods is in calculating the inner products and the subse-

quent vector update in the Gram-Schmidt process. Due to the block nature of the

proposed method much of this extra work could be distributed across any available

processors. We envisage that a state-of-the-art implementation would yield great

computational savings, which would be manifested in a significantly reduced run-

ning time. This would be especially true for very large scale problems, where the

cost of the subdomain solves would dominate the cost of each iteration. A Fortran 95

implementation of MPGMRES – HSL MI29 – will be included in the 2013 release

of the HSL subroutine library.

Recall from Algorithm 1 that in the implementation of sMPGMRES reported

here we apply each preconditioner to the sum of the columns of Vk+1. This choice

is by no means unique, and there are many other possible selection strategies [5,

Section 2.3]. The approach employed here seems to perform well on a wide range

of problems, but it is a somewhat arbitrary choice. There may be situations where

another selection strategy would be superior; this is one avenue for future research.
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5 Conclusions

We have presented an algorithm that applies Additive Schwarz with Variable Weights.

The approach is incorporated as a set of multiple preconditioners into MPGMRES.

Domain decomposition has a few unique features that make our approach partic-

ularly attractive. First, the preconditioning step entails the same cost when using

both selective MPGMRES and standard preconditioned GMRES, and the cost of

the matrix-vector products is also of the same order as in the standard GMRES al-

gorithm. Secondly, because there is a very low degree of overlap between nodes in

the different subdomains, the growth in the search space for complete MPGMRES is

only linear, i.e., very modest. This is in contrast to other situations, where the search

space for complete MPGMRES grows exponentially and we settle for a selective

algorithm. For these reasons we believe that the combination of domain decompo-

sition preconditioners and the MPGMRES framework is an effective method for the

numerical solution of linear systems arising from PDEs.
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