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1 Discrete Stokes

The algebraic Stokes is of the following saddle point form: Find (Uh,Ph) ∈Vh×Qh
such that (

Ah BT
h

Bh 0

)(
Uh
Ph

)
=

(
Fh
0

)
. (1)

We suppose that the system (1) arises from the mixed finite-element discretization
of Stokes on a domain Ω . We consider spaces Vh and Qh that satisfy the inf-sup
condition and whose elements are continuous. Such spaces can be found in [5] and
include Hood-Taylor and Mini elements. Under the inf-sup condition and assuming
a mixed boundary condition on the velocity there exists a unique solutuion to (1).

2 Hybrid dual-primal FETI-Schur

Stokes is a bottleneck in the analysis of incompressible fluid flows and is the subject
of many researches. The numerical solution of the system (1) that arises from its
discretization is a challenging problem because of the indefiniteness of saddle-point
problems [1]. Memory space storage is an other important issue to deal with for large
three-dimensional problems. An overview of solution methods to solve saddle-point
problems is given in [1]. We focus on iterative methods such as FETI and BDD that
save memory space and have proved efficiency for many linear systems. The do-
main Ω is split into N non-overlapping subdomains {Ω (s)}s=1,··· ,N with interface

ΓI =∪N
s,q=1{Ω

(s)∩Ω
(q)}. Degrees of freedom of each subdomain Ω (s) are split into

internal degrees of freedom designated by subscript i and degrees of freedom des-
ignated by subscript Γ that correspond to the interface of the subdomain Ω (s) with
other subdomains. Related to the spliting above, FETI and BDD split the original
linear systems into subproblems whose solutions are flux and trace continuous re-
spectively [4, 9]. FETI adresses these compatibility requirements by introducing a
unique Lagrange multiplier on the interface to ensure the weak continuity of the sub-
solutions. FETI is dual to BDD that imposes a unique trace to the subsolutions on
the interface. The original system is thus reduced in both cases to interface problems
to be solved by Krylov methods that nullify the residual at convergence. The resid-
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uals in FETI and BDD are the jump of the solutions and of the flux on the interface
respectively.These domain decomposition methods have been successfully extended
to solve the system (1) when the discrete pressure is discontinuous. Their interface
systems become mixed problems when the discrete velocity and pressure are both
continuous. The spectral distribution of the interface operators slows down the rate
of convergence of FETI and BDD that is proven to be optimal for systems arising
from the discretization of elliptic problems. The interface unknowns resulting from
the combination of FETI and BDD should be physically homogeneous [6] and well-
suited for saddle-point problems such as (1) that arise in many applications [1]. We
split the system (1) into N subsystems, renumber the unkwnows starting with the
internal ones to get the following system:
Local systems(

A(s)
ii B(s)

ii
T

B(s)
ii 0

)(
U (s)

i

P(s)
i

)
+

(
AiΓ
BiΓ

)
U (s)

Γ
+

(
B(s)

iΓ

T

0

)
P(s)

Γ
=

(
F(s)

i
0

)
, (2)

interface problems

(
A(s)

Γ i B(s)
iΓ

T
)(U (s)

i

P(s)
i

)
+A(s)

Γ Γ
U (s)

Γ
+B(s)T

Γ Γ
P(s)

Γ
= F(s)

Γ
, (3)

incompressibility conditions

(
B(s)

Γ i 0
)(U (s)

i

P(s)
i

)
+B(s)

Γ Γ
U (s)

Γ
= 0, s = 1, · · · ,N. (4)

Systems (2)-(4) supplemented with continuity conditions on the velocity and on the
pressure through the interface are equivalent to system (1).
Introduce notations:
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M(s)
uu = A(s)

Γ Γ
−
(

A(s)
Γ i B(s)

iΓ

T
)(

A(s)
ii B(s)

ii
T

B(s)
ii 0

)−1(
A(s)

iΓ

B(s)
iΓ

)
,

M(s)
up = B(s)T

Γ Γ
−
(

A(s)
Γ i B(s)

iΓ

T
)(

A(s)
ii B(s)

Γ Γ

T

B(s)
ii 0

)−1(
B(s)

iΓ

T

0

)
,

M(s)
pu = B(s)

Γ Γ
−
(

B(s)
Γ i 0

)(
A(s)

ii B(s)
ii

T

B(s)
ii 0

)−1(
A(s)

iΓ

B(s)
iΓ

)
,

M(s)
pp =

(
B(s)

Γ i 0
)(

A(s)
ii B(s)

ii
T

B(s)
ii 0

)−1(
B(s)

Γ i

T

0

)
,

F̃(s)
Γ

= F(s)
Γ
−
(

A(s)
Γ i B(s)

iΓ

T
)(

A(s)
ii B(s)

ii
T

B(s)
ii 0

)−1(
F(s)

i
0

)
,

F̃i
(s)

=
(

B(s)
Γ i 0

)(
A(s)

ii B(s)
ii

T

B(s)
ii 0

)−1(
F(s)

i
0

)
, s = 1, · · · ,N.

Lemma 1. The subdomain Schur complements M(s)
pp and M(s)

uu are symmetric, posi-
tive semi-definite.

Proof. Matrices M(s)
pp are clearly symmetric. Systems (2) are well-posed algebraic

problems although they are not the usual Stokes because of the Dirichlet boundary
condition on the pressure [2]. Therefore, for any given P(s)

Γ
, there exists(

U (s)
i

P(s)
i

)
=−

(
A(s)

ii B(s)
ii

T

B(s)
ii 0

)−1(
B(s)

iΓ

T

0

)
P(s)

Γ
.

By Gaussian elimination, we haveA(s)
ii B(s)

ii
T

B(s)
Γ i

T

B(s)
ii 0 0

B(s)
Γ i 0 0


U (s)

i

P(s)
i

P(s)
Γ

=

 0
0

−M(s)
pp P(s)

Γ

 . (5)

Therefore,

−P(s)T

Γ
M(s)

pp P(s)
Γ

=

U (s)
i

P(s)
i

P(s)
Γ


T A(s)

ii B(s)
ii

T
B(s)

Γ i

T

B(s)
ii 0 0

B(s)
Γ i 0 0


U (s)

i

P(s)
i

P(s)
Γ


= U (s)T

i A(s)
ii U (s)

i +2P(s)T

i B(s)
ii U (s)

i +2P(s)T

Γ
B(s)

Γ i U
(s)
i . (6)

From (5), we have
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B(s)
ii U (s)

i = 0 and B(s)
Γ i U

(s)
i =−M(s)

pp P(s)
Γ

.

Then from (6) and the positivity of the matrix arising from the discretization of the
Laplace operator by finite elements, we have

P(s)T

Γ
M(s)

pp P(s)
Γ

=U (s)T

i A(s)
ii U (s)

i ≥ 0.

We also have A(s)
ii B(s)

ii
T

B(s)
Γ i

T

B(s)
ii 0 0

B(s)
Γ i 0 0


 0

1(s)i

1(s)
Γ

=

0
0
0

 (7)

where 1(s)i and 1(s)
Γ

are constants in the subdomain Ω (s) and on its boundary re-
spectively. By equality (7) one can show that in general there exists R(s)

p such that
M(s)

pp R(s)
p = 0.

It is well-known that the subdomain Schur complements M(s)
uu are symmetric, posi-

tive semi-definite in general [7].

Eliminating the internal degrees of freedom from local systems (2), the interface
systems (3) and the incompressibility conditions (4) can be written as

M(1)
uu M(1)

up 0 0 · · · · · · 0 0
M(1)

pu −M(1)
pp 0 0 · · · · · · 0 0

0 0
. . . . . . . . .

...
...

0 0
. . . . . . . . . . . .

...
...

...
...

. . . . . . . . . . . . 0 0
...

...
. . . . . . . . . 0 0

0 0 · · · · · · 0 0 M(N)
uu M(N)

up

0 0 · · · · · · 0 0 M(N)
pu −M(N)

pp





U (1)
Γ

P(1)
Γ

...

...

...

...
U (N)

Γ

P(N)
Γ


=



F̃(1)
Γ

−F̃i
(1)

...

...

...

...
F̃(N)

Γ

−F̃i
(N)


. (8)

We introduce a unique Lagrange multiplier λ to ensure the weak continuity of the
velocity on the interface as in FETI transforming the system (8) into
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M(1)
uu M(1)

up 0 0 · · · · · · 0 0 T (1)T

M(1)
pu −M(1)

pp 0 0 · · · · · · 0 0 0

0 0
. . . . . . . . .

...
...

...

0 0
. . . . . . . . . . . .

...
...

...
...

...
. . . . . . . . . . . . 0 0

...
...

...
. . . . . . . . . 0 0

...
0 0 · · · · · · 0 0 M(N)

uu M(N)
up T (N)T

0 0 · · · · · · 0 0 M(N)
pu −M(N)

pp 0
T (1) 0 · · · · · · · · · · · · T (N) 0 0





U (1)
Γ

P(1)
Γ

...

...

...

...
U (N)

Γ

P(N)
Γ

λ



=



F̃(1)
Γ

−F̃i
(1)

...

...

...

...
F̃(N)

Γ

−F̃i
(N)

0



. (9)

where {T (s)}s=1,N are boolean matrices of elements−1, 0 and 1. The application of
the matrix T (s) to a matrix or a vector extracts and signs the interface components
of that matrix or vector [4]. We next introduce the 0–1 matrix L(s)T

that maps the
interface degrees of freedom of subdomain Ω (s) into global interface degrees of
freedom belonging to the interface ΓI [9]. we develop the system (9) imposing a
unique pressure on the interface as in BDD as P(s)

Γ
= PΓ to obtain :

M(s)
uu U (s)

Γ
+M(s)

up PΓ +T (s)T
λ = F̃(s)

Γ
, (10)

M(s)
pu U (s)

Γ
−M(s)

pp PΓ = −F̃(s), (11)
N

∑
s=1

T (s)U (s)
Γ

= 0. (12)

We can then eliminate the degrees of freedom associated to the velocity in the equa-
tion (10) as in FETI taking into account the possibly singularity of the matrices
M(s)

uu ,s = 1, · · · ,N. Using the previously obtained velocity into the equations (11)
and (12) we get the FETI type interface system:(

FDP −GI
−GT

I 0

)(
Λ

α

)
=

(
d
−eT

)
(13)

where

F(s)
DP =

 (
M(s)+

uu

) (
M(s)+

uu

)
M(s)

up

M(s)
pu

(
M(s)+

uu

) (
M(s)

pp +M(s)
pu

(
M(s)+

uu

)
M(s)

up

) , FDP =
N

∑
s=1

B(s)F(s)
DP B(s)T

,

B(s) =

(
T (s) 0

0 L(s)T

)
,GI =

(
T (1)R(1)

u · · · T (N f )R(
N f )

u
0 · · · 0

)
, Λ =

(
λ

PΓ

)
,

N f the number of floating subdomains, R(s)
u ,s = 1, · · · ,N f store the basis of the ker-

nel of the matrices M(s)
uu and α a combination of them. The interface system (13)
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derives from a substructuring strategy using one-level FETI on the velocity and the
primal Schur complement method on the pressure and shares some common ideas
with previous methods. Indeed, the idea of combining dual and primal Schur com-
plement method to solve algebraic systems has been introduced in [3]. A general-
ization of FETI and primal Schur complement has been obtained using A-FETI, a
three-field variant of FETI [6]. In [8], the authors use FETI-DP on the velocity and
the primal Schur complement on the pressure to solve the algebraic system arising
from the discretization of Stokes with a modified Hood-Taylor element.
Interchanging the role of U (s)

Γ
and P(s)

Γ
we obtain the matrix

F(s)
PD =

(M(s)
uu +M(s)

up

(
M(s)+

pp

)
M(s)

pu

)
M(s)

up

(
M(s)+

pp

)(
M(s)+

pp

)
M(s)

pu

(
M(s)+

pp

)  , s = 1, · · · ,N. (14)

We have

Lemma 2. Matrices F(s)
DP ,s = 1, · · · ,N are symmetric positive semi-definite.

Proof. Matrices F(s)
DP ,s = 1, · · · ,N are clearly symmetric. For any

(
λ (s)

P(s)
Γ

)
let us

compute the following quantity (
λ (s)

P(s)
Γ

)T

F(s)
DP

(
λ (s)

P(s)
Γ

)
=

(
λ (s)

P(s)
Γ

)T
T (s)

(
M(s)+

uu

)
T (s)T

T (s)
(

M(s)+
uu

)
M(s)

up

M(s)
pu

(
M(s)+

uu

)
T (s)T

(
M(s)

pp +M(s)
pu

(
M(s)+

uu

)
M(s)

up

)(λ (s)

P(s)
Γ

)
=

{
λ
(s)+M(s)

up P(s)
Γ

}T
M(s)+

uu

{
λ
(s)+M(s)

up P(s)
Γ

}
+P(s)T

Γ
M(s)

pp P(s)
Γ

. (15)

We have shown that matrices M(s)
pp are positive semi-definite and matrices M(s)+

uu are
known to be positive semi-definite [4]. We can then conclude by (15) that matrices
F(s)

DP ,s = 1, · · · ,N are positive semi-definite in general.

The FETI type operator FDP is thus positive semi-definite in general and we can
solve the system (13) by projected preconditioned conjugate gradient [4]. The suit-
able projector P is a matrix that projects Λ onto the null space of GT

I . The precon-
ditioner we choose is BDD with a local component defined as a weighted sum of

matrices F(s)
PD and a coarse problem using the possibly kernel

(
−M(s)

up R(s)
p

R(s)
p

)
of ma-

trices F(s)
DP . Define weights

{
D(s)

u

}
s=1,N

and
{

D(s)
p

}
s=1,N

associated with velocity

and pressure respectively and the matrices
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C =

(
−D(1)

u M(1)
up R(1)

p · · ·−D(N)
u M(N)

up R(N)
p

D(1)
p R(1)

p · · ·D(N)
p R(N)

p

)
,

B(s)
D =

(
D(s)

u T (s) 0
0 L(s)T

D(s)
p

)
, s = 1, · · · ,N.

The BDD algorithm is defined as follows:

1. Balance the original residual
(

ru
rp

)
by solving the auxiliary problem

CT PT FDPPCµ =CT
(

ru
rp

)
, (16)

2. Compute the matrix-vector product(
λ̄ (s)

P̄(s)
Γ

)
= F(s)

PD B(s)T

D

((
ru
rp

)
−PT FDPCµ

)
, s = 1, · · · ,N, (17)

3. Balance the residual by solving the coarse problem

CT FDPCγ =CT

((
ru
rp

)
−PT FDPP

N

∑
s=1

B(s)
D

(
λ̄ (s)

P̄(s)
Γ

))
, (18)

4. Average the solutions on the interface

M
(

ru
rp

)
=

N

∑
s=1

B(s)
D

(
λ̄ (s)

P̄(s)
Γ

)
+Cγ . (19)

3 Theoretical analysis of the condition number

Define T = ∑
N
s=1 B(s)

D F(s)
PD B(s)T

D and P0 the PT FDPP− orthogonal projection on the
kernel of F(s)

DP . Following [9] one can prove

Lemma 3. The algorithm above returns z = M
(

ru
rp

)
, where

M =
(
(Id−P0)T

(
PT FDPP

)
(Id−P0)+P0

)(
PT FDPP

)−1
. (20)

We have

Theorem 1. The algorithm above returns z = M
(

ru
rp

)
, where M is a symmetric

positive definite matrix and cond
(
M,PT FDPP

)
≤ c, where
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c = sup


∑

N
s=1

∥∥∥∥∥B(s)T
P∑

N
r=1 B(r)

D

(
λ̂ (r)

P̂(r)
Γ

)∥∥∥∥∥
2

F(s)
DP

∑
N
s=1

∥∥∥∥∥
(

λ̂ (s)

P̂(s)
Γ

)∥∥∥∥∥
2

F(s)
DP

: GT
I

(
λ̂ (s)

P̂(s)
Γ

)
= 0,

〈(
λ̂ (s)

P̂(s)
Γ

)
,

(
µ̂(s)

Q̂(s)
Γ

)〉
= 0,∀

(
µ̂(s)

Q̂(s)
Γ

)
∈ Ker(F(s)

DP), 1≤ s≤ N

}
. (21)

We omit the proof of the theorem above because it essentially follows [9].

4 Conclusion

We have combined FETI and BDD to solve the discrete Stokes with continuous
pressure. The original system is reduced to an interface system whose matrix is
symmetric positive semi-definite in general and whose unknowns are physically
homogeneous. We have given the operator form of the preconditioner and a result
from which a bound for the condition number could be derived.
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