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1 Introduction

The FETI-DP algorithm was first extended to solving incompressible Stokes equa-
tions by Li [3], where a Dirichlet preconditioner was considered and the subdomain
average pressure degrees of freedoms were selected as a primal constraint, in addi-
tion to the coarse level primal velocity constraints. The resulting coarse problem is
a saddle point problem. The condition number bound is independent of the number
of subdomains and grows only polylogarithmically with the size of the individual
subdomain problems.

Recently, Kim, Lee, and Park [2] introduced a different FETI-DP formulation
for this problem, where no pressure variables are selected as coarse level primal
variables and the resulting coarse level problem is symmetric positive definite. Only
the lumped preconditioner is considered in their paper.

Both approaches mentioned above are valid only for discretizations with a dis-
continuous pressure. Discontinuous pressures have also been used in domain de-
composition algorithms for similar type saddle-point problems; see for example
[1, 5, 7].

In this paper, we propose a FETI-DP algorithm for incompressible Stokes using
either a lumped or a Dirichlet preconditioner with continuous pressure discretiza-
tion; see also [4, 8] for more details. Our coarse problem includes no pressure vari-
ables and is symmetric positive definite.

2 Discretization and domain decomposition

The weak solution of the incompressible Stokes problem, on a bounded, two-
dimensional polygonal domain Ω with a zero Dirichlet boundary condition, is given
by: find u∗ ∈

(
H1

0 (Ω)
)2

= {v ∈ (H1(Ω))2
∣∣ v = 0 on ∂Ω} and p∗ ∈ L2(Ω), such

that {
a(u∗,v)+b(v, p∗) = (f,v), ∀v ∈

(
H1

0 (Ω)
)2
,

b(u∗,q) = 0, ∀q ∈ L2(Ω) ,
(1)

where
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a(u∗,v) =
∫

Ω

∇u∗ ·∇v, b(u∗,q) =−
∫

Ω

(∇ ·u∗)q, (f,v) =
∫

Ω

f ·v.

We note that the solution of (1) is not unique, with the pressure p∗ determined only
up to an additive constant.

A Q2-Q1 Taylor-Hood mixed finite element is used in this paper to solve (1).
The domain Ω is partitioned into shape-regular rectangular elements of character-
istic size h. The pressure finite element space, Q ⊂ L2(Ω), is taken as the space
of continuous piecewise bilinear functions while the velocity finite element space,
W ∈

(
H1

0 (Ω)
)2, is formed by the continuous piecewise biquadratic functions.

The finite element solution (u, p) ∈W
⊕

Q of (1) satisfies[
A BT

B 0

][
u
p

]
=

[
f
0

]
, (2)

where A, B, and f represent, respectively, the restrictions of a(·, ·), b(·, ·) and (f, ·) to
the finite-dimensional spaces W and Q. We use the same notation in this paper to
represent both a finite element function and the vector of its nodal values. The solu-
tion of (2) always exists and is uniquely determined when the pressure is considered
in the quotient space Q/Ker(BT ), where Ker(BT ) represents the kernel of BT and is
the space of constant pressures in Q. In this paper, when q ∈ Q/Ker(BT ), q always
has a zero average.

The Taylor-Hood mixed finite element space W×Q is inf-sup stable in the sense
that there exists a positive constant β , independent of h, such that, in matrix/vector
form,

sup
w∈W

〈q,Bw〉2

〈w,Aw〉
≥ β

2 〈q,Zq〉 , ∀q ∈ Q/Ker(BT ). (3)

Here, as elsewhere in this paper, 〈·, ·〉 represents the inner product of two vectors.
The matrix Z represents the mass matrix defined on the pressure finite element space
Q, i.e., for any q ∈ Q, ‖q‖2

L2 = 〈q,Zq〉. It is easy to see, cf. [6, Lemma B.31], that
Z is spectrally equivalent to h2I for two-dimensional problems, where I represents
the identity matrix of the same dimension, i.e., there exist positive constants c and
C, such that

ch2I ≤ Z ≤Ch2I. (4)

Here, as in other places of this paper, c and C represent generic positive constants
which are independent of the mesh size h and the subdomain diameter H (discussed
below).

The domain Ω is decomposed into N non-overlapping polygonal subdomains
Ωi, i = 1,2, ...,N. Each subdomain is the union of a bounded number of elements,
with the diameter of the subdomain on the order of H. The nodes on the interface of
neighboring subdomains match across the subdomain boundaries Γ = (∪∂Ωi)\∂Ω .
Γ is composed of subdomain edges, which are regarded as open subsets of Γ , and
of the subdomain vertices, which are end points of edges.

The velocity and pressure finite element spaces W and Q are decomposed into
W = WI

⊕
WΓ , Q = QI

⊕
QΓ , where WI and QI are direct sums of independent
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subdomain interior velocity spaces W(i)
I , and interior pressure spaces Q(i)

I , respec-
tively. WΓ and QΓ are subdomain boundary velocity and pressure spaces, respec-
tively. All functions in WΓ and QΓ are continuous across the subdomain boundaries
Γ ; their degrees of freedom are shared by neighboring subdomains.

To formulate our algorithm, we introduce a partially sub-assembled subdomain
boundary velocity space W̃Γ ,

W̃Γ = WΠ

⊕
W∆ = WΠ

⊕(
N⊕

i=1

W(i)
∆

)
.

Here WΠ is the continuous primal velocity space which forms the coarse level prob-
lem of the proposed algorithm. In this paper, we consider two choices of WΠ . The
first choice is with that WΠ is spanned by all the subdomain corner velocity nodal
basis functions. In the second choice, WΠ is spanned by both subdomain corner
velocity nodal basis functions and edge-average finite element basis functions. We
note that the appropriate choice of WΠ depends on the preconditioner used in the
algorithm. The first choice is sufficient for using the lumped preconditioner, but for
the Dirichlet preconditioner the second one has to be used.

The space W∆ is the direct sum of subdomain dual interface velocity spaces W(i)
∆

.
The functions w∆ in W∆ are in general not continuous across Γ . In order to enforce
their continuity, we construct a matrix B∆ from {0,1,−1} such that for any w∆ in
W∆ , each row of B∆ w∆ = 0 implies that the two independent degrees of freedom
from the neighboring subdomains be the same. The range of B∆ applied on W∆ is
denoted by Λ , the vector space of the Lagrange multipliers. A positive scaling factor
δ †(x) for each node x on the subdomain boundary Γ is defined as δ †(x) = 1/Nx,
where Nx represents the number of subdomains sharing x. Multiplying the entries
on each row of B∆ by the corresponding scaling factor δ †(x) gives us B∆ ,D.

The original linear system (2) is equivalent to: find (uI , pI , u∆ , uΠ , pΓ , λ ) ∈
WI

⊕
QI
⊕

W∆

⊕
WΠ

⊕
QΓ

⊕
Λ , such that

AII BT
II AI∆ AIΠ BT

Γ I 0

BII 0 BI∆ BIΠ 0 0

A∆ I BT
I∆

A∆∆ A∆Π BT
Γ ∆

BT
∆

AΠ I BT
IΠ

AΠ∆ AΠΠ BT
Γ Π

0

BΓ I 0 BΓ ∆ BΓ Π 0 0

0 0 B∆ 0 0 0





uI

pI

u∆

uΠ

pΓ

λ


=



fI

0

f∆

fΠ

0

0


, (5)

where the sub-blocks in the coefficient matrix represent the restrictions of A and
B of (2) to appropriate subspaces. The leading three-by-three block can be ordered
to become block diagonal with each diagonal block representing one independent
subdomain problem.

Corresponding to the one-dimensional null space of (2), a basis of the one-
dimensional null space of (5) has the form
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0, 1pI , 0, 0, 1pΓ

, −B∆ ,D[BT
I∆

BT
Γ ∆

]

[
1pI

1pΓ

])
, (6)

where 1pI ∈ QI and 1pΓ
∈ QΓ represent vectors with each entry equal to 1.

3 A reduced symmetric positive semi-definite system

The system (5) can be reduced to a Schur complement problem for the variables
(pΓ , λ ). The leading four-by-four block of the coefficient matrix in (5) is invertible
and the variables (uI , pI , u∆ , uΠ ) can be eliminated and we obtain

G

[
pΓ

λ

]
= g, (7)

where

G =

[
BΓ I 0 BΓ ∆ BΓ Π

0 0 B∆ 0

]
AII BT

II AI∆ AIΠ

BII 0 BI∆ BIΠ

A∆ I BT
I∆

A∆∆ A∆Π

AΠ I BT
IΠ

AΠ∆ AΠΠ


−1

BT
Γ I 0

0 0

BT
Γ ∆

BT
∆

BT
Γ Π

0

 , (8)

and

g =

[
BΓ I 0 BΓ ∆ BΓ Π

0 0 B∆ 0

]
AII BT

II AI∆ AIΠ

BII 0 BI∆ BIΠ

A∆ I BT
I∆

A∆∆ A∆Π

AΠ I BT
IΠ

AΠ∆ AΠΠ


−1

fI

0

f∆

fΠ

 . (9)

We denote

Ã =


AII BT

II AI∆ AIΠ

BII 0 BI∆ BIΠ

A∆ I BT
I∆

A∆∆ A∆Π

AΠ I BT
IΠ

AΠ∆ AΠΠ

 and BC =

[
BΓ I 0 BΓ ∆ BΓ Π

0 0 B∆ 0

]
. (10)

It is easy to see that−G is the Schur complement of the coefficient matrix of (5) with
respect to the last two row blocks. By the Sylvester law of inertia, G is symmetric
positive semi-definite. The null space of G can be derived from the null space of the
original coefficient matrix of (5), and its basis has the form, cf. (6),(

1pΓ
, −B∆ ,D[BT

I∆
BT

Γ ∆
]

[
1pI

1pΓ

])
.
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Let X = QΓ

⊕
Λ . The range of G, denoted by RG, is the subspace of X , which is

orthogonal to the null space of G and has the form

RG =

{[
gpΓ

gλ

]
∈ X

∣∣∣ gT
pΓ

1pΓ
−gT

λ

(
B∆ ,D[BT

I∆ BT
Γ ∆ ]

[
1pI

1pΓ

])
= 0

}
. (11)

The restriction of G to its range RG is positive definite.
The main operation in the implementation of multiplying G by a vector is the

product of Ã−1 with a vector, cf. (8) and (9). We denote

Arr =

 AII BT
II AI∆

BII 0 BI∆

A∆ I BT
I∆

A∆∆

 , AΠr = AT
rΠ =

[
AΠ I BT

IΠ AΠ∆

]
, fr =

 fI

0

f∆

 ,
and define the Schur complement

SΠ = AΠΠ −AΠrA−1
rr ArΠ .

By the Sylvester law of inertia, SΠ is symmetric positive definite and defines the
coarse level problem in the algorithm. The product

AII BT
II AI∆ AIΠ

BII 0 BI∆ BIΠ

A∆ I BT
I∆

A∆∆ A∆Π

AΠ I BT
IΠ

AΠ∆ AΠΠ


−1

fI

0

f∆

fΠ


can then be represented by[

A−1
rr fr

0

]
+

[
−A−1

rr ArΠ

IΠ

]
S−1

Π

(
fΠ −AΠrA−1

rr fr
)
,

which requires solving the coarse level problem once and independent subdomain
Stokes problems with Neumann type boundary conditions twice.

4 Preconditioners and condition number bounds

Both the lumped and the Dirichlet preconditioners are proposed here for solving (7).
We define

Ṽ = WI
⊕

QI
⊕

W∆

⊕
WΠ ,

and its subspace

Ṽ0 =
{

w = (wI , pI , w∆ , wΠ ) ∈ Ṽ : BIIwI +BI∆ w∆ +BIΠ wΠ = 0
}
.
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We note that 〈·, ·〉Ã defines an inner product on Ṽ0. We denote the restriction operator
from Ṽ onto W∆ by R̃∆ such that for any v = (wI , pI , w∆ , wΠ ) ∈ Ṽ , R̃∆ v = w∆ .

The lumped preconditioner is given by

M−1
L =

[ 1
h2 IpΓ

M−1
L,λ

]
,

where IpΓ
is the identity matrix of the same length as pΓ and M−1

L,λ =B∆ ,DR̃∆ ÃR̃T
∆

BT
∆ ,D.

Let M−1
D,λ = B∆ ,DH∆ BT

∆ ,D. Then the Dirichlet preconditioner is defined as

M−1
D =

[ 1
h2 IpΓ

M−1
D,λ

]
,

where H∆ is the direct sum of the discrete subdomain harmonic extension operators.
The following lemma is used for obtaining the upper bound estimate in Theorem

1, and it is valid for both preconditioners, denoted here by M−1.

Lemma 1. For any v∈ Ṽ0,
〈
M−1BCv,BCv

〉
≤Φ(H,h)

〈
Ãv,v

〉
. Here, for the lumped

preconditioner, Φ(H,h) =C(H/h)(1+ log(H/h)) with only corner variables in the
coarse space; Φ(H/h) =C(H/h) with both corner and edge-average variables. For
the Dirichlet preconditioner, Φ(H,h) = C(1+ log(H/h))2 with both corner and
edge-average coarse variables.

The second lemma is used for the lower bound estimate. For the lumped pre-
conditioner, the corner primal constraints are sufficient for the coarse space to prove
this lemma. However, for the Dirichlet preconditioner, both corner and edge-average
constraints have to be included in the coarse space.

Lemma 2. For any given y = (gpΓ
,gλ ) ∈ RG, there exits v ∈ Ṽ0, such that BCv = y,

and
〈

Ãv,v
〉
≤ C

β 2

〈
M−1y,y

〉
.

Theorem 1. For all x = (pΓ ,λ ) ∈ RM−1G,

cβ
2 〈Mx,x〉 ≤ 〈Gx,x〉 ≤Φ(H,h)〈Mx,x〉 ,

where Φ(H,h) is as defined in Lemma 1 and β is the inf-sup constant of (3).

5 Numerical experiments

We solve the incompressible Stokes problem in the square domain Ω = [0,1]×
[0,1]. Zero Dirichlet boundary conditions are used. The right-hand side function f is
chosen such that the exact solution is
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Table 1 Performance with the lumped preconditioner M−1
L .

Vertex Vertex and edge
H/h #sub λmin λmax iter λmin λmax iter

8 4×4 0.31 32.28 31 0.31 4.30 19

8×8 0.31 37.25 46 0.31 4.50 20

16×16 0.31 38.40 51 0.31 4.53 21

24×24 0.31 38.62 51 0.31 4.55 21

32×32 0.31 38.68 51 0.31 4.55 21

#sub H/h λmin λmax iter λmin λmax iter

8×8 4 0.30 15.92 34 0.30 3.21 18

8 0.31 37.25 46 0.30 4.50 20

12 0.31 60.62 56 0.31 6.65 24

16 0.31 85.32 62 0.31 8.87 27

24 0.31 137.49 73 0.31 13.40 32

u =

[
sin3(πx)sin2(πy)cos(πy)

−sin2(πx)sin3(πy)cos(πx)

]
and p = x2− y2.

The Q2-Q1 Taylor-Hood mixed finite element is used for the finite element solu-
tion. The preconditioned system is solved by a CG iteration; the iteration is stopped
when the L2−norm of the residual is reduced by a factor of 10−6.

Table 1 shows the minimum and maximum eigenvalues of the iteration matrix
M−1

L G, and the iteration counts. Two different coarse level spaces are tested in the
experiments: the coarse space spanned by only the subdomain corner velocities, and
the coarse space spanned by both the subdomain corner and the subdomain edge-
average velocities. The additional edge-average velocity components in the coarse
level problem improve the convergence rate even though they are not necessary for
the analysis.

Table 2 shows the performance of our algorithm for solving the same problem
with the Dirichlet preconditioner. For this case, the additional edge-average velocity
components included in the coarse level space are necessary, which is consistent
with our theory.

Acknowledgements This work was supported in part by National Science Foundation Contract
No. DMS-1115759.



8 Xuemin Tu and Jing Li

Table 2 Performance with the Dirichlet preconditioner M−1
D .

Vertex Vertex and edge
H/h #sub λmin λmax iter λmin λmax iter

8 4×4 0.30 4.40 18 0.30 3.04 17

8×8 0.29 5.03 24 0.30 3.50 18

16×16 0.26 5.28 25 0.30 3.92 19

24×24 0.24 5.33 25 0.30 4.10 19

32×32 0.23 5.36 25 0.30 4.18 19

#sub H/h λmin λmax iter λmin λmax iter

8×8 4 0.27 4.15 21 0.30 3.15 17

8 0.29 5.03 24 0.30 3.50 18

12 0.29 5.60 25 0.30 3.92 18

16 0.30 6.04 25 0.30 4.24 18

24 0.30 6.70 26 0.30 4.71 19
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